
Quantum Computation
Introduction to quantum algorithms

Lúıs Soares Barbosa & Renato Neves

MSc Physics Engineering

Universidade do Minho, 2024-25

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Physics of information

Information
is encoded in the state of a physical system

Computation

is carried out on an actual physically realizable device

• the study of information and computation cannot ignore the
underlying physical processes.

• ... although progress in Computer Science has been made by
abstracting from the physical reality

• more precisely: by building more and more abstract models of a sort
of reality, i.e. a way of understanding it

• ... until now ...

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Physics of information

How physics constrains our ability to use and manipulate information?

• Landauer’s principle (1961): information deleting is necessarily a
dissipative process.

• Charles Bennett (1973): any computation can be performed in a
reversible way, and so with no dissipation.

NAND =⇒ Toffoli

(x , y) 7→ ¬(x ∧ y) (x , y , z) 7→ (x , y , z ⊕ (x ∧ y))
with z = 1

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Physics of information

Information is physical, and the physical reality is quantum mechanical:

How does quantum theory shed light on the nature of information?

• Quantum dynamics is truly random

• Acquiring information about a physical system disturbs its state
(which is related to quantum randomness)

• Noncommuting observables cannot simultaneously have precisely
defined values: the uncertainty principle

• Quantum information cannot be copied with perfect fidelity: the
no-cloning theorem (Wootters, Zurek, Dieks, 1982)

• Quantum information is encoded in nonlocal correlations between
the different parts of a physical system, i.e. the predictions of
quantum mechanics cannot be reproduced by any local hidden
variable theory (John Bell, 1967)

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

The meaning of computable remains the same

A classical computer can simulate a quantum computer to arbitrarily
good accuracy.

... but the order of complexity may change

However, simulation is computationally hard, i.e. extremely inefficient as
the number of qubits increases:

• For 100 qubits the state space would require to store 2100 ≈ 1030

complex numbers!

• And what about rotating a vector in a vector space of dimension
1030?

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

In a sense this might not be a decisive argument:

Simulating the evolution of a vector in an exponentially large space can
be done locally through a probabilistic classical algorithm in which each
qubit has a value at each time step, and each quantum gate can act on
the qubits in various possible ways, one of which is selected as
determined by a (pseudo)-random number generator.

... After all, the computation provides a means of assigning probabilities
to all the possible outcomes of the final measurement...

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

However, Bell’s result precludes such a simulation: there is no local
probabilistic algorithm that can reproduce the conclusions of quantum
mechanics.

In the presence of entanglement, one can access only an exponentially
small amount of information by looking at each subsystem separately.

Quantum computing as using quantum reality as a computational resource

Richard Feynman, Simulating Physics with Computers (1982)

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Non deterministic computation

... can be represented by oriented graph (often call a transition system),
each node standing for a computational state and edges representing
transitions from a state to another.
Globally, the computational dynamics is encoded in the graph’s adjacency
matrix, a Boolean matrix M where Mi,j = 1 stands for a transition from j
to i . The next state is computed by matrix multiplication.

MS =


0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 1 0




0
0
1
0
0
0

 =


0
0
0
0
1
0


(MS)i =

5∑
k=0

Mi,kSk

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Non deterministic computation

Exercise
Discuss how this model captures non deterministic and weighted
transitions. If weights correspond to tokens or costs, then one step
computation (MS)i computes the number of tokens (resp., the global
cost) that will reach node i in the next time click as the sum of all tokens
(resp., costs) that are (resp., label) currently in the nodes connected to i .

Exercise
How does multi-step computation proceed?

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Probabilistic computation

States: Given a set of possible configurations, states are vectors of
probabilities in Rn which express indeterminacy about the exact physical

configuration, e.g.
[
p0 · · · pn

]T
st

∑
i p1 = 1

Dymanics: double stochastic matrix (must come (go) from (to)
somewhere), where Mi,j specifies the probability of evolution from
configuration j to i

Example:

0
1
6

5
6

1
3

1
2

1
6

2
3

1
3 0



Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Probabilistic computation

Evolution: computed through matrix multiplication with a vector |u⟩ of
current probabilities

• M |u⟩ (next state)

MS =

0
1
6

5
6

1
3

1
2

1
6

2
3

1
3

0




1
6
1
6
2
3

 =


21
36
9
36
6
36


i.e. it node 1 is the current node with 1

6 probability, it will remain so
after a computational step with 9

36 probability

• Matrix MT reverses computation, carrying us to the previous state

Measurement: the system is always in some configuration — if found in
i , the new state will be a vector |t⟩ st tj = δj,i

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Probabilistic computation
Composition:

p ⊗ q =

[
p1

1− p1

]
⊗
[

q1
1− q1

]
=


p1q1

p1(1− q1)
(1− p1)q1

(1− p1)(1− q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0
0.5


• Different dynamics (operators) are also composed by ⊗ (Kronecker):

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN



Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

States
State of n-qubits encoded as a unit vector

v ∈ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

∼= C2n

A vector cell is no more a real value in [0, 1], but a complex c tah
|c |2 ∈ [0, 1]. This model expresses a fundamental physical concept in
quantum mechanics: interference — complex numbers may cancel each
other out when added.

Exercise
Recall this fact considering numbers 5+ 3i and −3− 2i .

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

Dynamics
n-qubit operation encoded as a unitary transformation

C2n −→ C2n

i.e. a linear map that preserves inner products, thus norms.

Recall that the norm squared of a unitary matrix forms a double
stochastic one.

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Quantum computation

Evolution: computed through matrix multiplication with a vector |u⟩ of
current amplitudes (wave function)

• M |u⟩ (next state)

Measurement: configuration i is observed with probability |αi |
2 if found

in i , the new state will be a vector |t⟩ st tj = δj,i

Composition: also by a tensor on the complex vector space; may exist
entangled states.

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Basic operations

We start with a set of quantum operations, e.g.

Each operation Ui manipulates the state of ni -qubits received from its
left-hand side . . . and returns the result on its right-hand side

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Composition

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

What does sequential composition mean?

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

What does parallel composition mean?

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

My first quantum algorithm

The Deutsch problem

Is f : 2 −→ 2 constant, with a unique evaluation?

• Classically, to determine which case f (1) = f (0) or f (1) ̸= f (0)
holds requires running f twice

• Resorting to quantum computation, however, it suffices to run f
once . . . due to two quantum effects superposition and interference

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Turning f into a quantum operation

f : 2 −→ 2 extends to a linear map C2 → C2

. . . but not necessarily to a unitary transformation.

proof
The extended f does not preserve norms: Actually, when f is constant on
0 we obtain f |0⟩ = |0⟩ and f |1⟩ = |0⟩.
Thus, ∣∣∣ 1√

2
(|0⟩+ |1⟩)

∣∣∣ = 1

However, ∣∣∣f (1√
2
(|0⟩+ |1⟩)

) ∣∣∣ = ∣∣∣ 1√
2
(|0⟩+ |0⟩)

∣∣∣ = ∣∣∣ 2√
2
|0⟩

∣∣∣ = 2√
2

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Turning f into a quantum operation

Intuition
f potentially loses information whereas pure quantum operations are
reversible [Charles Bennett, 1973]

Actually, a unitary transformation is always injective so if a map loses
information it cannot be unitary.

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Turning f into a quantum operation

• The oracle takes input |x⟩|y⟩ to |x⟩|y ⊕ f (x)⟩
• Fixing y = 0 it encodes f :

Uf (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0⊕ f (x)⟩ = |x⟩ ⊗ |f (x)⟩

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Turning f into a quantum operation

• Uf is a unitary, i.e. a reversible gate

book-yanofsky CUUS235-Yanofsky ISBN 9780521879965 June 6, 2008 16:17 Char Count= 0

6.1 Deutsch’s Algorithm 173

looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ (f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x⟩|(y ⊕ f (x))⊕ f (x)⟩ = |x⟩|y ⊕ (f (x)⊕ f (x))⟩ = |x⟩|y ⊕ 0⟩ = |x⟩|y⟩

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Exploiting quantum parallelism

Can f be evaluated for |0⟩ and |1⟩ in one step?

Consider the following circuit

Uf (H ⊗ I)(|0⟩ ⊗ |0⟩)

= Uf

(
1√
2
(|0⟩+ |1⟩)⊗ |0⟩

)
{Defn. of H and I}

= Uf

(
1√
2
(|00⟩+ |10⟩)

)
{⊗ distributes over +}

= 1√
2
(|0⟩|0⊕ f (0)⟩+ |1⟩|0⊕ f (1)⟩) {Defn. of Uf }

= 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

{0⊕ x = x}

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Are we done?

Uf (H ⊗ I)(|0⟩ ⊗ |0⟩) = 1√
2
(|0⟩|f (0)⟩+ |1⟩|f (1)⟩)︸ ︷︷ ︸

f (0) and f (1) in a single run

NO
Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES
The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f : whether it is constant or not,
technically on the value of

f (0)⊕ f (1)

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Exploiting quantum parallelism and interference

Actually, the Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f

Let us create an interference pattern dependent on this property, and
resort to wave collapse to prepare for the expected result:

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Exploiting quantum parallelism and interference

Let us start with a simple, auxiliary computation:

Uf (|x⟩ ⊗ (|0⟩− |1⟩))
= Uf (|x⟩|0⟩− |x⟩|1⟩) {⊗ distributes over + }

= |x⟩|0⊕ f (x)⟩− |x⟩|1⊕ f (x)⟩ {Defn. of f }

= |x⟩|f (x)⟩− |x⟩|¬f (x)⟩ {0⊕ x = x , 1⊕ x = ¬x}

= |x⟩ ⊗ (|f (x)⟩− |¬f (x)⟩) {⊗ distributes over +}

=

{
|x⟩ ⊗ (|0⟩− |1⟩) if f (x) = 0

|x⟩ ⊗ (|1⟩− |0⟩) if f (x) = 1
{case distinction}

leading to

Uf (|x⟩ ⊗ (|0⟩− |1⟩)) = (−1)f (x)|x⟩ ⊗ (|0⟩− |1⟩)

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Exploiting quantum parallelism and interference

Now computing the semantics of the whole circuit leads to

(H ⊗ I)Uf (H ⊗ I) (|0⟩ ⊗ |−⟩)
= (H ⊗ I)Uf (|+⟩ ⊗ |−⟩) {. . . }
= 1√

2
(H ⊗ I)Uf ((|0⟩+ |1⟩)⊗ |−⟩) {. . . }

= 1√
2
(H ⊗ I) (Uf |0⟩ ⊗ |−⟩+ Uf |1⟩ ⊗ |−⟩) {. . . }

= 1√
2
(H ⊗ I)

(
(−1)f (0)|0⟩ ⊗ |−⟩+ (−1)f (1)|1⟩ ⊗ |−⟩

)
{Previous slide}

=

{
(H ⊗ I)(±1)|+⟩ ⊗ |−⟩ if f (0) = f (1)

(H ⊗ I)(±1)|−⟩ ⊗ |−⟩ if f (0) ̸= f (1)
{Case distinction}

=

{
(±1)|0⟩ ⊗ |−⟩ if f (0) = f (1)

(±1)|1⟩ ⊗ |−⟩ if f (0) ̸= f (1)
{. . . }

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Lessons learnt

• A typical structure fro a quantum algorithm includes three phases:

1. State preparation
(fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement
tool)

• This ’toy’ algorithm is an illustrative simplification of the first

algorithm with quantum advantage

presented in literature [Deutsch, 1985]

• All other quantum algorithms crucially rely on similar ideas of
quantum interference

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

Algorithms for quantum advantage

Quantum computers are conjectured to provide exponential advantage
for specific computational problems.

• New complexity classes can be defined relevant to quantum
computation (theory).

• Algorithmic patterns exclusive to quantum computation make the
difference (practice).

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

The quest for efficient quantum algorithms

The quest

• Non exponential speedup. Not relevant for the complexity debate,
but shed light on what a quantum computer can do.
Example: Grover’s search of an unsorted data base.

• Exponential speedup relative to an oracle. By feeding quantum
superpositions to an oracle, one can learn what is inside it with an
exponential speedup.
Example: Simon’s algorithm for finding the period of a unction.

• Exponential speedup for apparently hard problems
Example: Shor’s factoring algorithm.

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

The quest for efficient quantum algorithms

Factoring in polynomial time - O((ln n)3)

Peter Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum Computer (1994)

• Classically believed to be superpolynomial in log n, i.e. as n
increases the worst case time grows faster than any power of log n.

• The best classical algorithm requires approximately

e1.9(
3√
ln n 3

√
(ln ln n)2)

• From the best current estimation (the 65 digit factors of a 130 digit
number can be found in around one month in a massively parallel
computer network) one can extrapolate that to factor a 400 digit
number will take about the age of the universe (1010 years)

Introduction The computational model The language of circuits An algorithm for the Deutsch problem

What’s next?

1. Study a number of algorithmic techniques

2. and their application to the development of quantum algorithms

3. ... in between, revisit basic notions of computability and complexity

	Introduction
	The computational model
	The language of circuits
	An algorithm for the Deutsch problem

