Quantum Computation Shor's algorithm

Luís Soares Barbosa & Renato Neves

MSc Physics Engineering

Universidade do Minho, 2023-24

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of the time complexity of factoring from $\mathcal{O}(e^{\sqrt[3]{n}})$ to $\mathcal{O}(n^3 \log n)$, with potential impact in cryptography.

> 12301866845301177551304949583849627207 72853569595334792197322452151726400507 26365751874520219978646938995647494277 40638459251925573263034537315482680791 70261221429134616704292143116022212404 7927473779408066535141959745985 6902143413 =

Shor's algorithm

In this famous 1994 paper, Peter Shor proved that it is possible to factor a n-bit number in time that is polynomial to n.

The factorization problem

Given an integer n, find positive integers $p_1, p_2, \dots, p_m, r_1, r_2, \dots, r_m$ such that

- Integers p_1, p_2, \cdots, p_m are distinct primes;
- and, $n = p_1^{r_1} \times p_2^{r_2} \times \cdots \times p_m^{r_m}$.

Note that one may assume n to be odd and contain at least two distinct odd prime factors (why?)

Since the test for primality can be done classically in polynomial time, the factoring problem can be reduced to $O(\log n)$ instances of the following problem:

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

$$1 < n_1 < n$$
 and $1 < n_2 < n$

st $n = n_1 \times n_2$

Shor's algorithm

Shor's algorithm

Factorization

Miller proved in 1975 that this problem reduces probabilistically to another problem whose solution resorts to the eigenvalue estimation problem, already studied.

The order-finding problem

Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order of a modulo n.

Preliminaries: Modular arithmetic

Consider the group of integers modulo n,

$$\mathcal{Z}_{n} = (\{0, 1, 2, \cdots, n-1\}, \times_{n}, 1, ^{-1})$$

For two integers x and y we write

$$x \equiv y \pmod{n}$$
 iff $\operatorname{rem}(x, n) = y$

or, equivalently, rem (x - y, n) = 0, where rem (a, b) is the reminder of the integer division of a by b.

Examples

$$5 \equiv 0 \, (\mathsf{mod} \, 5)$$
 and $6 \equiv 1 \, (\mathsf{mod} \, 5)$

Preliminaries: Modular arithmetic

Definition

For co-prime integers a < n the order of $a \pmod{n}$ is the smallest integer r > 0 s.t. $a^r \equiv 1 \pmod{n}$

Example

```
If N=5 the sequence 3^0,3^1,3^2,3^3,3^4,3^5,3^6,\ldots leads to the sequence 1,3,4,2,1,3,4,\ldots Thus, Order of 3\pmod 5 is thus 4
```

Exercise

What is the order of 2 (mod 11)?

The order-finding problem

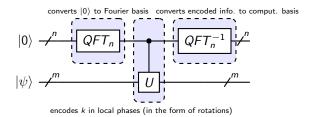
Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order of a modulo n, i.e. the smallest positive integer r such that

$$a^r \equiv 1 \pmod{n}$$

- Classically, this problem can be difficult for large integers.
- In a quantum computer, however, it can be solved efficiently via the quantum eigenvalue estimation algorithm.

Strategy: The eigenvalue approach

Recall the eigenvalue estimation circuit:



Need to choose suitable U and $|\psi\rangle$ to disclose the order

Strategy: The eigenvalue approach

Take co-prime integers
$$a < n$$

Let $m = \lceil \log_2 n \rceil$ and define $U_a : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$
 $U_a(|q\rangle) = |\operatorname{rem}(qa,n)\rangle$ for $0 \le q < n$
 $U_a(|q\rangle) = |q\rangle$ for $q \ge n$

Exercise

Show U_a is unitary.

Exercise

Show that
$$U_a | \operatorname{rem}(a^n, n) \rangle = | \operatorname{rem}(a^{n+1}, n) \rangle$$

Next step is to identify suitable eigenvectors.

A first attempt (starting with an axample)

For n = 5, sequence

$$3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \dots$$

leads to $1, 3, 4, 2, 1, 3, 4, \ldots$, thus the order r of 3 (mod 5) is 4.

Thus, compute

$$U_{a}\left(\frac{1}{\sqrt{r}}(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

$$= U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i},5)\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}|\operatorname{rem}(3^{i+1},5)\rangle$$

$$= \frac{1}{\sqrt{r}}\left(|3\rangle + |4\rangle + |2\rangle + |1\rangle\right)$$

$$= \frac{1}{\sqrt{r}}\left(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$$

... to conclude that his state is an eigenvector of U_a

The previous example resorts to the equation

. r-1 . r-1

$$U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right)$$

Unfortunately, the corresponding eigenvalue is $1 \dots$ which does not disclose any information about r!

Need to find eigenvectors with more informative eigenvalues.

Since $a^r = 1 \pmod{n}$,

$$U_a^r(|q\rangle) = |\text{rem}(qa^r, n)\rangle = |q\rangle$$

i.e. U_a is the rth root of the identity operator I, i.e. $(U_a)^r = I$.

It can be shown that the eigenvalues λ of such an operator satisfy $\lambda^r=1$, i.e. they are the rth root of 1, which means they take the form $e^{i2\pi\frac{k}{r}}$, for some integer k.

In the previous example, $1 = e^{i2\pi \frac{0}{r}}$

A second attempt

Let us consider a different state:

$$|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} | \text{rem}(a^i, n) \rangle$$

a.k.a. the r roots of unity

where $\omega = e^{i2\pi \cdot \frac{1}{r}}$ (division of the <u>unit circle</u> in *r* slices)

$$\begin{aligned} &U_{a}\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right) \\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle \\ &=\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle\right\rangle \\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}\left|\operatorname{rem}\left(a^{i+1},n\right)\right\rangle\right) \\ &=\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}\left|\operatorname{rem}\left(a^{i},n\right)\right\rangle\right) \end{aligned}$$

A second attemp

The calculation in the previous slide shows that

$$U_{\mathsf{a}}\ket{\psi_1} = \omega\ket{\psi_1}$$

So if we feed the quantum eigenvalue estimation circuit with U_a and $|\psi_1\rangle$ we obtain an approximation of $\frac{1}{r}$ with a good success probability $(\geq \frac{4}{\pi^2} \approx 0.4)$.

Exercise

Formally justify all the steps in that calculation.

Exercise

Would a similar conclusion pop out if our starting state was

$$|\psi_{\mathbf{k}}\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i\mathbf{k}} | \operatorname{rem}(\mathbf{a}^i, \mathbf{n}) \rangle$$

A third attempt

However ...

Without knowing r we do not know how to prepare $|u_1\rangle$, or, in general $|u_k\rangle$.

Fortunately, it is not necessary!

Instead of preparing an eigenstate corresponding to an eigenvalue $e^{i2\pi\frac{k}{r}}$ for a randomly selected $k\in\{0,1,\cdots,r-1\}$, it suffices to prepare a uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a random eigenvalue.

Question

How to prepare such a superposition without knowing r?

Define

$$|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |\psi_k\rangle$$

with
$$|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-ik} | \mathrm{rem} \left(\mathbf{a}^i, \mathbf{n} \right) \rangle$$
.

Exercise

Show that $U_a |\psi_k\rangle = \omega^k |\psi_k\rangle$.

Now observe that

$$|\operatorname{rem}(a^{i}, n)\rangle = |1\rangle \text{ iff } \operatorname{rem}(i, r) = 0$$

Thus, the amplitude of $|1\rangle$ in the above state is the sum over the terms for which i=0

(because i takes values in [0, r-1] and must be a multiple of r)

$$\frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-i2\pi \frac{k}{r}0} = \frac{1}{r} \sum_{k=0}^{r-1} 1 = 1$$

Thus, if the amplitude of $|1\rangle$ is 1, this means that the amplitudes of all other basis states are 0, yielding

$$\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle = |1\rangle$$

Therefore, we have defined a superposition of eigenvectors that is equal to $|1\rangle.$

Summing up

Thus, the eigenvalue estimation algorithm maps

$$|0\rangle|\mathbf{1}\rangle = |0\rangle \left(\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle\right) = \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|0\rangle|u_k\rangle \mapsto \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|\tilde{\phi}_k\rangle|u_k\rangle$$

where each $|\tilde{\phi}_k\rangle$ is the best *n*-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^2}$

But how to extract
$$r$$
 from $\left| \tilde{\phi}_{\mathbf{k}} \right\rangle$?

To estimate r one resorts another result in number theory ...

Estimating r

Theorem: Let r be a positive integer, and take integers k_1 to k_2 selected independently and uniformly at random from $\{0, 1, \dots, r-1\}$. Let c_1, c_2, r_1, r_2 be integers st gcd(r1, c1) = gcd(r2, c2) = 1 and

$$\frac{k_1}{r} = \frac{c_1}{r_1} \quad \text{and} \quad \frac{k_2}{r} = \frac{c_2}{r_2}$$

Then, $r = \text{lcm}(r_1, r_2)$ with probability at least $\frac{6}{\pi^2}$.

Thus

- To obtain $\frac{c_1}{c_1}$ from $\tilde{\phi}_k$, i.e. the nearest fraction approximating $\frac{k}{c_1}$ up to some precision dependent on the number of qubits used, one resorts to the continued fractions method.
- As a second pair (c_2, r_2) is needed, the whole algorithm is repeated.

Finally...the algorithm

In order to obtain the order r, proceed with the following steps

- 1. run the quantum eigenvalue estimation followed by the continued fractions algorithm twice to obtain two reduced fractions $\frac{k_1}{r_1}$ and $\frac{k_2}{r_2}$
- 2. if $gcd(k_1, k_2) \neq 1$ repeat previous step else set r las the east common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output r else go back to step 1

In step 2,

- The probability of $gcd(k_1, k_2) = 1$ is $\geq \frac{1}{4}$. Hence whole algorithm has constant probability of success
- computation of gcd and least common multiple has complexity $O(m^2)$. Hence the whole algorithm must be efficient.

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

$$1 < n_1 < n$$
 and $1 < n_2 < n$

st
$$n = n_1 \times n_2$$

Miller proved in 1975 that this problem reduces probabilistically to the order-finding problem, all reductions being classical: only the estimation problem is quantum.

Reduction to order-finding

- To split n, choose randomly, with uniform probability, an integer a and compute its order r such that a and n are coprime (test a from {2,3, · · · , n − 2}). If they are not coprime, their greatest common divisor is already a non trivial factor of n.
- If r is even (it will be with at least a probability of 0.5), $a^r 1$ can be factorized as

$$a^r - 1 = (a^{\frac{r}{2}} - 1)(a^{\frac{r}{2}} + 1)$$

• As r is the order of a, n divides $a^r - 1$, which means n must share a factor with $(a^{\frac{r}{2}} - 1)$, or $(a^{\frac{r}{2}} + 1)$, or both.

This factor can be extracted by the Euclides algorithm which efficiently returns $gcd(a^r - 1, n)$.

Question

But how can be sure such a factor in non trivial?

Reduction to order-finding

- Clearly n does not divide $(a^{\frac{r}{2}}-1)$. Actually, if rem $(a^{\frac{r}{2}}-1,n)=0$, $\frac{r}{2}$, rather than r, would be the order of a.
- However, n may divide $(a^{\frac{r}{2}}+1)$, i.e. $a^{\frac{r}{2}}=1 \pmod{n}$ and not share any factor with $(a^{\frac{r}{2}}-1)$.

Thus, the reduction is probabilistic according to the following

Theorem: Let $n=p_1^{r_1}\times p_2^{r_2}\times \cdots \times p_m^{r_m}$ be the prime factorization of an odd number with $m\geq 2$. Then for a random a, chosen uniformely as before, the probability that its order is even and $a^{\frac{r}{2}}\neq -1 \pmod{n}$ is at least $(1-\frac{1}{2^m})\geq \frac{9}{16}$.

For number theoretic results see N. Koblitz. *A Course in Number Theory and Cryptography*, Springer, 1994.

Shor's algorithm

- 1. Choose $1 \le a \le n-1$ randomly.
- 2. If gcd(a, n) > 1, then return gcd(a, n).
- 3. If gcd(a, n) = 1, then use the order-finding algorithm to compute r — the order of a wrt n.
- 4. If r is odd or $a^{\frac{r}{2}} \equiv -1 \pmod{n}$ then return to 1. else return $gcd(a^{\frac{r}{2}}-1,n)$ and $gcd(a^{\frac{r}{2}}+1,n)$.

Shor's approach to estimate a random integer multiple of $\frac{1}{r}$ in his original paper was different from the one discussed in this lecture, as an application of the eigenvalue estimation algorithm.

Shor's approach (based on period finding)

Create a state

$$\sum_{x=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} |x\rangle |\operatorname{rem}(a^{x}, n)\rangle$$

which is shown to be re-written as

$$\sum_{b=0}^{r-1} \left(\frac{1}{\sqrt{2^n}} \sum_{z=0}^{m_b-1} |zr+b\rangle \right) |\operatorname{rem}(a^x, n)\rangle$$

where m_b is the largest integer st $(m_b-1)r+b \le 2^n-1$.

Shor's algorithm

Shor's approach (based on period finding)

• Measuring the target register yields rem (a^b, n) for b chosen uniformly at random from $\{0,1,2,\cdots,r-1\}$, and leaves the control register in

$$\frac{1}{\sqrt{m_b}}\sum_{z=0}^{m_b-1}|zr+b\rangle$$

• Apply QFT_{2n}^{-1} to the control register Note that, if r, m_b were known (!), applying QFT_{mbr}^{-1} would lead to

$$\sum_{i=0}^{r-1} \mathrm{e}^{-i2\pi\frac{b}{r}j} |m_b j\rangle$$

i.e. only values x such that $\frac{x}{rmb} = \frac{i}{r}$ would be measured.

Measure x and output $\frac{x}{2^n}$.

Shor's algorithm

Note that in both approaches the circuit is the same. The only difference is the basis in which the state of the system is analysed:

- the eigenvector basis
- the computational basis in Shor's original algorithm.

Shor's original algorithm is based on the period finding algorithm, which is another application of phase estimation

(see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT.

Quantum algorithms

Recall the overall idea:

engineering quantum effects as computational resources

Classes of algorithms

- Algorithms with superpolynomial speed-up, typically based on the quantum Fourier transform, include Shor's algorithm for prime factorization. The level of resources (qubits) required is not yet currently available.
- Algorithms with quadratic speed-up, typically based on amplitude amplification, as in the variants of Grover's algorithm for unstructured search. Easier to implement in current NISQ technology, typical component of other algorithms.
- Quantum simulation

... and we are done

Where to look further

- Quantum computation is an extremely young and challenging area, looking for young people either with a theoretical or experimental profile.
 - Get in touch if you are interested in pursuing studies/research in the area at UMinho, INESC TEC and INL.
- Follow-up courses next semester on
 - Quantum Logic (calculi and logics for quantum programs)
 - Quantum Data Science (algorithms and exciting applications)

Method to approximate any real number t with a sequence of rational numbers of the form

$$[a_0, a_1, \cdots, a_p]$$
 defined by $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_p}}}}$

computed inductively as follows

$$a_0 = \lfloor t \rfloor$$
 $r_0 = t - a_0$
 $a_j = \left\lfloor \frac{1}{r_{j-1}} \right\rfloor$ $r_j = \frac{1}{r_{j-1}} - \left\lfloor \frac{1}{r_{j-1}} \right\rfloor$

The sequence $[a_0, a_1, \dots, a_p]$ is called the *p*-convergent of *t*. If $r_p = 0$ the continued fraction terminates with a_p and $t = [a_0, a_1, \dots, a_p]$,

Continued Fractions

Example: $\frac{47}{13} = [3, 1, 1, 1, 1, 2]$

$$\frac{47}{13} = 3 + \frac{8}{13} = 3 + \frac{1}{\frac{13}{8}}$$

$$= 3 + \frac{1}{1 + \frac{5}{8}} = 3 + \frac{1}{1 + \frac{1}{\frac{1}{8}}}$$

$$= 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}} = 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}}}$$

$$= 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{3}}}} = 3 + \frac{1}{1 + \frac{1$$

Theorem: The expansion terminates iff t is a rational number.

[which makes continued fractions the *right*, finite expansion for rational numbers, differently form decimal expansion]

Theorem:
$$[a_0, a_1, \cdots, a_p] = \frac{p_i}{q_j}$$
 where $p_0 = a_0, \ q_0 = 1$ $p_1 = 1 + a_0 a_1$ $p_i = a_i p_{i-1} + p_{i-2}, \ q_i = a_i q_{i-1} + q_{i-2}$

Theorem: Let x and $\frac{p}{q}$ be rationals st

$$\left|x - \frac{p}{q}\right| \le \frac{1}{2q^2}.$$

Then, $\frac{p}{a}$ is a convergent of the continued fraction for x.