Quantum Computation Estimating eigenvalues: An application of QFT

Luís Soares Barbosa \& Renato Neves

MSc Physics Engineering

Universidade do Minho, 2023-24

The problem: Eigenvalue estimation

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort to the following technique:

- Take a controlled version of an operator U and prepare the target qubit with an eigenvector,
- win order to push up (or kick back) the associated eigenvalue to the state of the control qubit as in

$$
c U\left(a_{0}|0\rangle+a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=\left((-1)^{f(0)} a_{0}|0\rangle+(-1)^{f(1)} a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

The problem: Eigenvalue estimation

The question
Can this technique be generalised to estimate the eigenvalues of an arbitrary, n-qubit unitary operator U ?

The eigenvalue estimation problem
Let $\left(|\psi\rangle, e^{i 2 \pi \phi}\right)$, with $0 \leq \phi<1$, be an eigenvector, eigenvalue pair for a unitary U. Determine ϕ.

Note that eigenvalues of unitary operators are always of this form.

The strategy

Use a controled version of U to prepare a state from which ϕ can be found through the inverse of the QFT (recall the phase estimation problem already discussed)

A Simple Example
Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i 2 \pi \phi} \phi$ is equal to one of the values $\left\{0 \cdot \frac{1}{2}, 1 \cdot \frac{1}{2}\right\}$. Find out ϕ.

This is obtained via the circuit

The general case

In less trivial cases, a multi-controlled version of U is reguired:

Intuitively it applies U to $|y\rangle$ a number of times equal to x
Examples
$|10\rangle|y\rangle \mapsto|10\rangle(U U|y\rangle)$ and $|00\rangle|y\rangle \mapsto|00\rangle|y\rangle$
Note that $|\psi\rangle$ is also an eigenvector of U^{\times}, with eigenvalue $e^{i 2 \pi \times \phi}$, for any integer x.

Multi-controlled operations

Recall that a binary number $x_{1} \ldots x_{n}$ corresponds to the natural number $2^{n-1} x_{1}+\cdots+2^{0} x_{n}$
We use this to build the previous multi-controlled operation in terms of simpler operations

Note that the multi-controlled operation uses n 'simply'-controlled rotations $U^{2 i}$

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i 2 \pi \phi}$ ϕ is equal to one of the following values $\left\{0 \cdot \frac{1}{4}, 1 \cdot \frac{1}{4}, 2 \cdot \frac{1}{4}, 3 \cdot \frac{1}{4}\right\}$ The following circuit discovers ϕ

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i 2 \pi \phi}$ ϕ is equal to one of the following values $\left\{0 \cdot \frac{1}{4}, 1 \cdot \frac{1}{4}, 2 \cdot \frac{1}{4}, 3 \cdot \frac{1}{4}\right\}$

The following circuit discovers ϕ

Another Example

$$
\begin{aligned}
& |0\rangle|0\rangle \\
& \stackrel{H^{\otimes 2}}{\longmapsto} \frac{1}{\sqrt{2^{2}}}(|00\rangle+|01\rangle+|10\rangle+|11\rangle) \\
& \stackrel{\text { ctrl. }}{\mapsto} U \frac{1}{\sqrt{2^{2}}}\left(|00\rangle+e^{i 2 \pi \phi}|01\rangle+e^{i 2 \pi \phi \cdot 2}|10\rangle+e^{i 2 \pi \phi \cdot 3}|11\rangle\right) \\
& =\frac{1}{\sqrt{2^{2}}}\left(|00\rangle+e^{i 2 \pi x \cdot \frac{1}{4}}|01\rangle+e^{i 2 \pi x \cdot \frac{1}{4} \cdot 2}|10\rangle+e^{i 2 \pi x \cdot \frac{1}{4} \cdot 3}|11\rangle\right) \\
& =\frac{1}{\sqrt{2^{2}}}\left(|00\rangle+\omega_{2}^{x}|01\rangle+\omega_{2}^{x \cdot 2}|10\rangle+\omega_{2}^{x \cdot 3}|11\rangle\right) \\
& \underset{\stackrel{Q F T_{2}^{-1}}{\longmapsto}}{\mapsto}|x\rangle
\end{aligned}
$$

Yet Another Example

Take a unitary U with eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i 2 \pi \phi}$ st $\phi \in\left\{0 \cdot \frac{1}{2^{n}}, \ldots, 2^{n}-1 \cdot \frac{1}{2^{n}}\right\}$

The following circuit returns x such that $\phi=x \cdot \frac{1}{2^{n}}$

Exercise

Prove that indeed the circuit returns x such that $\phi=x \cdot \frac{1}{2^{n}}$

Yet Another Example

Exercise

Show that $Q F T_{n}|0\rangle=H^{\otimes n}|0\rangle$.
Note that this allows to rewrite the previous circuit in the one below

Complexity of quantum eigenvalue estimation

How many gates does the circuit above use?
n 'Hadamards' $+n$ 'simply'-controlled gates $+n^{2}$ gates for $Q F T_{n}^{-1}$

... but precision is Limited

We assumed $0 \leq \phi<1$ takes a value from $\left\{0 \cdot \frac{1}{2^{n}}, \ldots, 2^{n}-1 \cdot \frac{1}{2^{n}}\right\}$
... an assumption that arose from having only n qubits to estimate ...

But what to do if ϕ takes none of these values?
Return the n-bit number k with $k \cdot \frac{1}{2^{n}}$ the value above closest to ϕ
Is the circuit above up to this task?

Setting the stage

Let $\omega_{n}=e^{i 2 \pi \cdot \frac{1}{2^{n}}} \underbrace{\left(\text { division of the unit circle in } 2^{n} \text { slices) }\right.}_{\text {a.k.a. the } n \text { roots of unity }}$
To answer the previous question, we will use the following explicit defn. of $Q F T^{-1}$

$$
Q F T_{n}^{-1}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \omega_{n}^{-x \cdot k}|k\rangle
$$

Exercise
Prove that $Q F T_{n}^{-1}$ is indeed the inverse of $Q F T_{n}$

Setting the stage

Let $k \cdot \frac{1}{2^{n}}$ be the value in $\left\{0 \cdot \frac{1}{2^{n}}, \ldots, 2^{n}-1 \cdot \frac{1}{2^{n}}\right\}$ closest to ϕ, i.e.

$$
\exists_{\epsilon} \cdot 0 \leq|\epsilon| \leq \frac{1}{2^{n}} \quad \text { and } \quad k \cdot \frac{1}{2^{n}}+\epsilon=\phi
$$

Note that the difference ϵ decreases when the number of qubits increases.
Recall the circuit

encodes k in local phases (in the form of rotations)

Setting the stage

Let $k \cdot \frac{1}{2^{n}}$ be the value in $\left\{0 \cdot \frac{1}{2^{n}}, \ldots, 2^{n}-1 \cdot \frac{1}{2^{n}}\right\}$ closest to ϕ, i.e.

$$
\exists_{\epsilon} \cdot 0 \leq|\epsilon| \leq \frac{1}{2^{n}} \quad \text { and } \quad k \cdot \frac{1}{2^{n}}+\epsilon=\phi
$$

Note that the difference ϵ decreases when the number of qubits increases.
Recall the circuit

Computing the output again

$|0\rangle$

$$
\begin{aligned}
& \stackrel{H^{\otimes n}}{\longmapsto} \frac{1}{\sqrt{2^{n}}}\left(|0\rangle+|1\rangle+\cdots+\left|2^{n}-1\right\rangle\right) \\
& \stackrel{\text { ctrl. }}{\longmapsto} U \frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{i 2 \pi \phi \cdot 1}|1\rangle+\cdots+e^{i 2 \pi \phi \cdot 2^{n-1}}\left|2^{n}-1\right\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}}\left(|0\rangle+e^{i 2 \pi\left(k \cdot \frac{1}{2^{n}}+\epsilon\right) \cdot 1}|1\rangle+\cdots+e^{i 2 \pi\left(k \cdot \frac{1}{2^{n}}+\epsilon\right) \cdot 2^{n-1}}\left|2^{n}-1\right\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi\left(k \cdot \frac{1}{2^{n}}+\epsilon\right) \cdot j}|j\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i 2 \pi \epsilon \cdot j}|j\rangle \\
& Q F T^{-1} \\
& \stackrel{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i 2 \pi \epsilon \cdot j}\left(\frac{1}{\sqrt{2^{n}}} \sum_{l=0}^{2^{n}-1} e^{-i 2 \pi j \cdot \frac{1}{2^{n}} \cdot I}|I\rangle\right) \\
& =\frac{1}{2^{n}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i 2 \pi \epsilon \cdot j}\left(\sum_{l=0}^{2^{n}-1} e^{-i 2 \pi j \cdot \frac{1}{2^{n}} \cdot I}|I\rangle\right) \\
& =\frac{1}{2^{n}} \sum_{j=0}^{2^{n}-1} \sum_{I=0}^{2^{n}-1} e^{i 2 \pi \epsilon \cdot j} e^{i 2 \pi j \cdot \frac{1}{2^{n}} \cdot(k-I)}|I\rangle
\end{aligned}
$$

Looking into the final state

The amplitude of $|k\rangle$ is $\frac{1}{2^{n}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi \epsilon \cdot j}$ which is a finite geometric series.
Therefore,

$$
\frac{1}{2^{n}} \sum_{j=0}^{2^{n}-1} e^{i 2 \pi \epsilon j}= \begin{cases}1 & \text { if } \epsilon=0 \\ \frac{1}{2^{n}} \frac{1-e^{i 2 \pi \epsilon 2^{n}}}{1-e^{i 2 \pi \epsilon}} & \text { if } \epsilon \neq 0\end{cases}
$$

Let us proceed under the assumption $\epsilon \neq 0$.

A geometric detour

$\left|1-e^{i \theta}\right|$ for some angle θ is the Euclidean distance between 1 and $e^{i \theta}$ (length of the straight line segment between both points) Consider also arc length θ between 1 and $e^{i \theta}$ (distance between the two points by running along the unit circle)

Theorem

Let d^{E} and d^{a} be respectively the Euclidean distance and arc length between 1 and $e^{i \theta}$. Then,
a. $d^{E} \leq d^{a}$
b. if $0 \leq \theta \leq \pi$ we have $\frac{d^{\star}}{d^{\star}} \leq \frac{\pi}{2}$

Finally!

Recall $\left|\frac{1}{2^{n}} \frac{1-e^{i 2 \pi \epsilon 2^{n}}}{1-e^{i 2 \pi \epsilon}}\right|^{2}$ is the probability of measuring $|k\rangle$

$$
\begin{array}{rlr}
\left|\frac{1}{2^{n}} \frac{1-e^{i 2 \pi \epsilon 2^{n}}}{1-e^{i 2 \pi \epsilon}}\right|^{2} & =\left(\frac{1}{2^{n}}\right)^{2} \frac{\left|1-e^{i 2 \pi \epsilon 2^{n}}\right|^{2}}{\left|1-e^{i 2 \pi \epsilon}\right|^{2}} & \\
& \geq\left(\frac{1}{2^{n}}\right)^{2} \frac{\left|1-e^{i 2 \pi \epsilon 2^{n}}\right|^{2}}{(2 \pi \epsilon)^{2}} & \text { \{Thm. [a.]\} } \\
& \geq\left(\frac{1}{2^{n}}\right)^{2} \frac{\left(\frac{2}{\pi} \cdot 2 \pi \epsilon 2^{n}\right)^{2}}{(2 \pi \epsilon)^{2}} & \text { \{Thm. [b.]\} } \\
& =\left(\frac{1}{2^{n}}\right)^{2} \frac{\left(4 \epsilon 2^{n}\right)^{2}}{(2 \pi \epsilon)^{2}} & \\
& =\left(\frac{1}{2^{n}}\right)^{2} \frac{\left(2 \cdot 2^{n}\right)^{2}}{\pi^{2}}=\frac{2^{2}}{\pi^{2}}=\frac{4}{\pi^{2}} &
\end{array}
$$

Working with a superposition of eigenvectors

The algorithm requires an eigenvector as input, but sometimes is highly difficult to build such a vector.

Often it is easier to feed instead a superposition of eigenvectors.
Indeed, by the spectral theorem one knows that the eigenvectors $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{N}\right\rangle\right\}$ of U (with associated eigenvalues $e^{i 2 \pi \phi_{1}}, \ldots, e^{i 2 \pi \phi_{N}}$) form a basis for the $N\left(=2^{n}\right)$-dimensional vector space on which U acts.

Thus, one may define

$$
|\psi\rangle=\frac{1}{\sqrt{N}}\left(\left|\psi_{1}\right\rangle+\cdots+\left|\psi_{N}\right\rangle\right)
$$

to feed the circuit

Working with a superposition of eigenvectors

Exercise

Show that if $\forall_{i \leq N} \cdot \phi_{i} \in\left\{0 \cdot \frac{1}{2^{n}}, \ldots, 2^{n}-1 \cdot \frac{1}{2^{n}}\right\}$ then the circuit's output is

$$
\frac{1}{\sqrt{N}}\left(\left|k_{1}\right\rangle\left|\psi_{1}\right\rangle+\cdots+\left|k_{N}\right\rangle\left|\psi_{N}\right\rangle\right) \quad\left(\phi_{i}=k_{i} \cdot \frac{1}{2^{n}}\right)
$$

Working with a superposition of eigenvectors

Similarly, it can be shown that in general the circuit's output is

$$
\frac{1}{\sqrt{N}}\left(\left|\tilde{\phi}_{1}\right\rangle\left|\psi_{1}\right\rangle+\cdots+\left|\tilde{\phi}_{N}\right\rangle\left|\psi_{N}\right\rangle\right)
$$

where each $\tilde{\phi}_{i}$ is the best n-bit approximation of ϕ_{i} with probability $\geq \frac{4}{\pi^{2}}$

