Quantum Computation Revisiting the quantum Fourier transform

Luís Soares Barbosa \& Renato Neves

Universidade do Minho

HASLab
HIGHASSURGNCE
SOFTWARE LABORATORY

MSc Physics Engineering
Universidade do Minho, 2023-24

Recap

The previous lecture discussed an algorithm to extract the phase factor $w \in\left[0,1\left[\right.\right.$ from a generic n-qubit quantum state. Writing w as $\frac{x}{2^{n}}$, for x an integer representable in n qubits, the estimation process was described by

$$
\frac{1}{\sqrt{2^{n}}} \sum_{y \in 2^{n}} e^{2 \pi i\left(\frac{x}{2^{n}}\right) y}|y\rangle \rightsquigarrow|x\rangle
$$

Its inverse is QFT, the quantum Fourier transform, a most useful routine in Quantum Computation.

Let us revisit its construction in a systematic way.

The quantum Fourier transform

Essentially, the QFT performs a change-of-basis operation which encodes information of computational basis states in local phases.

For 1 qubit state this is exactly what the Hadamard gate accomplishes:

$$
H|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+1|1\rangle) \quad H|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle+(-1)|1\rangle)
$$

QFT: 1 qubit

Thus, $Q F T_{1}=H$:

$$
Q F T_{1}|0\rangle=\frac{1}{\sqrt{2}}(|0\rangle+1|1\rangle) \quad Q F T_{1}|1\rangle=\frac{1}{\sqrt{2}}(|0\rangle+(-1)|1\rangle)
$$

Operation H^{-1} allows to extract information encoded in local phases

$$
\begin{gathered}
\downarrow \\
\downarrow \\
=H
\end{gathered}
$$

Exercise
Let $\omega_{1}=e^{i 2 \pi \frac{1}{2}}$. Show that $Q F T_{1}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{1}^{1 \cdot x}|1\rangle\right)$
angle of π radians

QFT: 2 qubits

Let $\omega_{2}=e^{i 2 \pi \frac{1}{4}}$

$$
\begin{aligned}
& Q F T_{2}|00\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 \cdot 0}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{1 \cdot 0}|1\rangle\right) \\
& Q F T_{2}|01\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 \cdot 1}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{1 \cdot 1}|1\rangle\right) \\
& Q F T_{2}|10\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 \cdot 2}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{1 \cdot 2}|1\rangle\right) \\
& Q F T_{2}|11\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 \cdot 3}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{1 \cdot 3}|1\rangle\right)
\end{aligned}
$$

Exercise
Compute the phase coeficients in the expressions above and use Bloch sphere to study $Q F T_{2}|x\rangle$.

QFT: 2 qubits

Hint

$$
\begin{array}{ll}
\omega_{2}^{2.0}=1 & \omega_{2}^{1.0}=1 \\
\omega_{2}^{2.1}=-1 & \omega_{2}^{1.1}=e^{i \frac{\pi}{2}} \\
\omega_{2}^{2.2}=1 & \omega_{2}^{1.2}=-1 \\
\omega_{2}^{2.3}=-1 & \omega_{2}^{1.3}=e^{i \frac{3}{2} \pi}
\end{array}
$$

Note that

- information on $|x\rangle$ previously encoded by vectors pointing to the poles becomes encoded by vectors in the xz-plane
- for every ω_{2}-rotation on the second qubit there are two such rotations on the first qubit

QFT: 2 qubits

In order to derive a circuit for QFT_{2}, compute

$$
\begin{aligned}
Q F T_{2}|x\rangle & =\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 \cdot x}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{1 \cdot x}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2\left(2 x_{1}+x_{2}\right)}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 x_{1}+x_{2}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{4 x_{1}+2 x_{2}}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 x_{1}+x_{2}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{4 x_{1}} \omega_{2}^{2 x_{2}}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 x_{1}} \omega_{2}^{x_{2}}|1\rangle\right) \\
& =\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 x_{2}}|1\rangle\right) \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{2}^{2 x_{1}} \omega_{2}^{x_{2}}|1\rangle\right) \\
& =\underbrace{\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{2}}|1\rangle\right)}_{H|\times 2\rangle} \otimes \underbrace{\frac{1}{\sqrt{2}}\left(|0\rangle+(-1)^{x_{1}} \omega_{2}^{x_{2}}|1\rangle\right)}_{\text {some controlled rot. on } H|\times 1\rangle}
\end{aligned}
$$

QFT: 2 qubits

Define

$$
R_{2}|0\rangle=|0\rangle \mid ; \quad \text { and } \quad R_{2}|1\rangle=\omega_{2}|1\rangle
$$

Intuitively, R_{2} rotates a vector in the $x z$-plane $\frac{\pi}{2}$ radians
It yields a controlled- R_{2} operation by $|x\rangle|0\rangle \mapsto|x\rangle|0\rangle$ and $|x\rangle|1\rangle \mapsto R_{2}|x\rangle|1\rangle$. or, equivalently,

$$
|0\rangle\left|x_{2}\right\rangle \mapsto|0\rangle\left|x_{2}\right\rangle \quad|1\rangle\left|x_{2}\right\rangle \mapsto \omega_{2}^{x_{2}}|1\rangle\left|x_{2}\right\rangle
$$

Putting all pieces together to derive the QFT circuit for 2 qubits:

QFT: 3 qubits

$$
Q F T_{3}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{3}^{4 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{2 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)
$$

$$
\text { for } \omega_{n}=e^{i 2 \pi \cdot \frac{1}{2^{n}}}
$$

N.B. In the sequel the normalisation factor $\frac{1}{\sqrt{2}}$ will be dropped in each state to make notation easier on the eyes

QFT: 3 qubits

In order to derive a circuit for $Q F T_{3}$, we observe

$$
\omega_{n}^{2}=\omega_{n-1} \text { and thus } \omega_{n}^{2^{n-1}}=e^{i \pi}=-1
$$

and recall that a binary number $x_{1} \ldots x_{n}$ represents the natural number $2^{n-1} \cdot x_{1}+\cdots+2^{0} \cdot x_{n}$.

Thus, compute $Q F T_{3}$ as follows:

QFT: 3 Qubits

$Q F T_{3}|x\rangle$
$=\left(|0\rangle+\omega_{3}^{4 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{2 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)$
$=\left(|0\rangle+(-1)^{x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{2 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)$
$=\left(|0\rangle+(-1)^{x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{2 \cdot x}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes\left(|0\rangle+\omega_{3}^{2 \cdot\left(4 x_{1}+2 x_{2}+x_{3}\right)}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes\left(|0\rangle+\omega_{3}^{2 \cdot\left(4 x_{1}+2 x_{2}\right)} \omega_{3}^{2 \cdot \cdot x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{1 \cdot x}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes\left(|0\rangle+\omega_{2}^{2 \cdot\left(2 x_{1}+x_{2}\right)} \omega_{2}^{x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{4 x_{1}+2 x_{2}+x_{3}}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes\left(|0\rangle+\omega_{2}^{2 \cdot\left(2 x_{1}+x_{2}\right)} \omega_{2}^{x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{4 x_{1}+2 x_{2}} \omega_{3}^{x_{3}}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes\left(|0\rangle+\omega_{2}^{2 \cdot\left(2 x_{1}+x_{2}\right)} \omega_{2}^{x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{3}^{2 \cdot\left(2 x_{1}+x_{2}\right)} \omega_{3}^{x_{3}}|1\rangle\right)$
$=H\left|x_{3}\right\rangle \otimes \underbrace{\left(|0\rangle+\omega_{2}^{2 \cdot\left(2 x_{1}+x_{2}\right)} \omega_{2}^{x_{3}}|1\rangle\right) \otimes\left(|0\rangle+\omega_{2}^{2 x_{1}+x_{2}} \omega_{3}^{x_{3}}|1\rangle\right)}_{\text {some controlled-rotations on } Q F T_{2}\left|x_{1} x_{2}\right\rangle}$

QFT: 3 qubits

Take $R_{3}|0\rangle=|0\rangle$ and $R_{3}|1\rangle=\omega_{3}|1\rangle$. Intuitively, R_{3} rotates a vector in the $x z$-plane 'one 2^{3}-th of the unit circle'.
It yields a controlled- R_{3} operation defined by $|x\rangle|0\rangle \mapsto|x\rangle|0\rangle$ and $|x\rangle|1\rangle \mapsto R_{3}|x\rangle|1\rangle$. Equivalently

$$
|0\rangle|y\rangle \mapsto|0\rangle|y\rangle \text { and }|1\rangle|y\rangle \mapsto \omega_{3}^{y}|1\rangle|y\rangle
$$

Putting all pieces together we derive the QFT circuit for 3 qubits

QFT: 3 qubits

Take $R_{3}|0\rangle=|0\rangle$ and $R_{3}|1\rangle=\omega_{3}|1\rangle$. Intuitively, R_{3} rotates a vector in the $x z$-plane 'one 2^{3}-th of the unit circle'.
It yields a controlled- R_{3} operation defined by $|x\rangle|0\rangle \mapsto|x\rangle|0\rangle$ and $|x\rangle|1\rangle \mapsto R_{3}|x\rangle|1\rangle$. Equivalently

$$
|0\rangle|y\rangle \mapsto|0\rangle|y\rangle \text { and }|1\rangle|y\rangle \mapsto \omega_{3}^{y}|1\rangle|y\rangle
$$

Putting all pieces together we derive the QFT circuit for 3 qubits

QFT: n qubits

Calculation easily extends to $Q F T_{n}$ (in lieu of $Q F T_{3}$) :
Let $\omega_{n}=e^{i 2 \pi \cdot \frac{1}{2^{n}}}$ (division of the unit circle in 2^{n} slices)

$$
Q F T_{n}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{n}^{2^{n-1} \cdot x}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+\omega_{n}^{2^{0} \cdot x}|1\rangle\right)
$$

Take $R_{n}|0\rangle=|0\rangle$ and $R_{n}|1\rangle=\omega_{n}|1\rangle$. Intuitively, R_{n} rotates a vector in the $x z$-plane 'one 2^{n}-th of the unit circle'

It yields a controlled- R_{n} operation defined by $|x\rangle|0\rangle \mapsto|x\rangle|0\rangle$ and $|x\rangle|1\rangle \mapsto R_{n}|x\rangle|1\rangle$. Equivalently

$$
|0\rangle|y\rangle \mapsto|0\rangle|y\rangle \text { and }|1\rangle|y\rangle \mapsto \omega_{n}^{y}|1\rangle|y\rangle
$$

QFT: n qubits

This suggests a recursive definition for the general QFT circuit:

swaps positions of qubits by doing +1 in base n

An equivalent formulation of QFT

Although we have been working with

$$
Q F T_{n}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{n}^{2^{n-1} \cdot x}|1\rangle\right) \otimes \cdots \otimes \frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{n}^{1 \cdot x}|1\rangle\right)
$$

we are already familiar with an equivalent, useful definition

$$
Q F T_{n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{k=0}^{2^{n}-1} \omega_{n}^{x \cdot k}|k\rangle
$$

Examples with $n=1$ and $n=2$

$$
\begin{aligned}
& Q F T_{1}|x\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+\omega_{1}^{x}|1\rangle\right) \\
& Q F T_{2}|x\rangle=\frac{1}{\sqrt{2^{2}}}\left(|00\rangle+\omega_{2}^{x}|01\rangle+\omega_{2}^{2 \cdot x}|10\rangle+\omega_{2}^{3 \cdot x}|11\rangle\right)
\end{aligned}
$$

