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Encoding information in phases

In several quantum algorithms information is encoded in the relative
phases of a quantum state.

The effect of Hadamard (once again)

H |x⟩ =
1√
2
(|0⟩+ (−1)x |1⟩) =

1√
2

∑
y∈2

(−1)xy |y⟩

H⊗n|x⟩ =
1√
2n

∑
y∈2n

(−1)x·y |y⟩

is to encode information about the value of x into the phases (−1)x·y of
basis states |y⟩.
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Encoding information in phases

Of course, as a reversible gate, the Hadamard gate also decodes
information from phases:

H⊗n 1√
2n

∑
y∈2n

(−1)x·y |y⟩ = H⊗n(H⊗n|x⟩)

= (H⊗nH⊗n)|x⟩
= I |x⟩
= |x⟩



Encoding data in phases Phase estimation The quantum Fourier transform Error analysis Exercises

Encoding information in phases

In general, phases are complex numbers

e2πiw

for any real w ∈ [0, 1[.

Of course, H⊗n cannot encode/decode information over such generic
phases. The general situation can be described as follows:

The phase estimation problem
Determine a good estimation of the phase parameter w given a general
quantum state

1√
2n

∑
y∈2n

e2πiwy |y⟩
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An algorithm for phase estimation

Notation

w = 0 . x1x2 · · ·

is written in base 2 (i.e. w = x12
−1 + x22

−2 + · · · ); thus

2kw = x1x2 · · · xk . xk+1xk+2 · · ·

and

e2πi(2
kw) = e2πi(x1x2···xk . xk+1xk+2··· )

= e2πi(x1x2···xk) e2πi(0 . xk+1xk+2··· )

= e2πi(0 . xk+1xk+2··· )

because e2πiz = 1 for any integer z .
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Case A: 1-qubit state and w = 0.x1

1√
2

∑
y∈2

e2πi(0.x1)y |y⟩ =
1√
2

∑
y∈2

e2πi(
x1
2 )y |y⟩

=
1√
2

∑
y∈2

eπi(x1y)|y⟩

=
1√
2

∑
y∈2

(−1)x1y |y⟩

=
1√
2
(|0⟩+ (−1)x1 |1⟩)

Clearly H will decode and retrieve x1 because

H

(
1√
2
(|0⟩+ (−1)x1 |1⟩)

)
= |x1⟩
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Case B: 2-qubit state and w = 0.x1x2

Observe that

1√
22

∑
y∈22

e2πi(0.x1x2)y |y⟩ =

(
|0⟩+ e2πi(0.x2)|1⟩√

2

)
⊗
(
|0⟩+ e2πi(0.x1x2)|1⟩√

2

)

which means that x2, but not x1, can be retrieved from the first qubit
through an application of H.

The phase rotator

R2 =

[
1 0

0 e
2πi
4

]
=

[
1 0
0 e2πi(0.01)

]
where 0.01 is in base 2 (thus, equal to 2−2).
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Case B: 2-qubit state and w = 0.x1x2
Taking x2 = 1 and applying the inverse of the phase rotator to the
second qubit, yields

R−1
2

(
|0⟩+ e2πi(0.x11)|1⟩√

2

)
=

[
1 0
0 e−2πi(0.01)

] (
|0⟩+ e2πi(0.x11)|1⟩√

2

)
=

|0⟩+ e2πi(0.x11−0.01)|1⟩√
2

=
|0⟩+ e2πi(0.x1)|1⟩√

2

Concluding

• x1 can now be determined by an application of H, as before.

• Moerevoer, the decision to apply R before the application of H
depends on x2 being 1 or 0, respectively.

• Thus, to find w = 0.x1x2 it is enough to apply a controlled version
of R, precisely controlled by the state of the first qubit.
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Case B: 2-qubit state and w = 0.x1x2

The circuit



Encoding data in phases Phase estimation The quantum Fourier transform Error analysis Exercises

Case C: 3-qubit state and w = 0.x1x2x3

The state is now

1√
23

∑
y∈23

e2πi(0.x1x2x3)y |y⟩ =

=

(
|0⟩+ e2πi(0.x3)|1⟩√

2

)
⊗
(
|0⟩+ e2πi(0.x2x3)|1⟩√

2

)
⊗
(
|0⟩+ e2πi(0.x1x2x3)|1⟩√

2

)

In this case the third qubit has to conditionally rotate both x2 and x3,
leading to the following circuit
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Going generic

Gate R3 in the circuit is an instance of a 1-qubit phase rotator

Rk =

[
1 0

0 e
2πi

2k

]
whose inverse acts as

R−1
k |0⟩ = |0⟩

R−1
k |1⟩ = e−2πi(0.0···1)|1⟩

with 1 in 0.0 · · · 1 appearing in position k .
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Going generic

The output state of the circuit is

|x3x2x1⟩

Thus, relabelling the qubits in reverse order, this provides an efficient
circuit to estimate the phase (actually, to give a totally accurate
estimation ...), by computing

1√
2n

∑
y∈2n

e2πi(
x
2n )y |y⟩ ⇝ |x⟩
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Inverting ...

The inverse of the phase estimation transformation computes

|x⟩ ⇝ 1√
2n

∑
y∈2n

e2πi(
x
2n )y |y⟩

which is obtained by taking the inverses of each gate and building the
circuit in reverse order.

The result is formally identical to the discrete Fourier transform.
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The quantum Fourier transform

QFT on basis states |0⟩, |1⟩ · · · |k − 1⟩

QFTk(|x⟩) =
1√
k

k−1∑
y=0

e2πi(
x
k )y |y⟩

The circuit
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The quantum Fourier transform

Complexity (number of gates)

• one H plus n − 1 conditional rotations on the first qubit

• one H plus n − 2 conditional rotations on the second qubit

• ...

n + (n − 1) + (n − 2) + · · ·+ 1 =
n(n − 1)

2

• plus n
2 swaps (each implemented by 3 CNOT gates)

Thus
n(n − 1)

2
+ 3x

n

2
=

n2 + 2n

2
≈ O(n2)
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The quantum Fourier transform

Complexity (number of gates)

n(n − 1)

2
+ 3x

n

2
=

n2 + 2n

2
≈ O(n2)

which compares to the classical case for the Fast FT: O(n2n)

The result is impressive: the quantum version requires exponentially less
operations to compute the Fourier transform than the (best) classical one.

• However, typical uses (e.g. in speech recognition) are limited by the
impossibility of directly measuring the Fourier transformed
amplitudes of the original state.

• This requires a subtler use of QFT in practice: the phase estimation
procedure, underlying many quantum algorithms (e.g. Shor and the
determination of the number of solutions in an unstructured
search), is one of them.
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Are we done?

• The circuit for QFTk computes the QFT for k a power of 2, i.e
k = 2n

• The phase estimation algorithm works only when the phase is of the
form w = 0.x1x2 · · · xn, i.e. x

2n for some integer x

However, it can be shown that, for an arbitrary w , the algorithm will
compute x such that x

2n is closest to w with high probability.

The question
What is the error emerging when w is not an integer multiple of 1

2n ?
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Are we done?

QFT−1 computes some superposition∑
x

αx(w)|x⟩

which represents the values of x that once measured gives a good
estimate of w , outputing x with probability |αx(w) |2.

This output x corresponds to an estimate

w̃ =
x

2n
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Are we done?
Consider w an integer not multiple of 1

2n , and let ŵ be the nearest integer

multiple of 1
2n to w , i.e. ŵ = x̂

2n is the closest number of this form to w .

Theorem
The phase estimation algorithm returns x̂ with probability at least 4

π2 , i.e.
the algorithm outputs an estimate x̂ with the given probability such that∣∣∣∣∣ x̂2n − w

∣∣∣∣∣ ≤ 1

2n+1
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Are we done?

Theorem

If
x

2n
≤ w ≤ x + 1

2n

The phase estimation algorithm returns either x or x + 1 with probability
at least 8

π2 i.e. the algorithm outputs an estimate x̂ with the given
probability such that ∣∣∣∣∣ x̂2n − w

∣∣∣∣∣ =
1

2n
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The reverse question

How many qubits are required to get w accurate to n bits, with a
probability p below a certain level?

Actually, the crucial choice is the value of n (number of qubits used) to
ensure the estimation is close enough.

For p = 1− 1
2(k−1) , the algorithm returns one of the 2k closest integer

multiples of 1
2n , i.e.

which means that |w − ŵ | ≤ k
2n .
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The reverse question

Thus, to estimate ŵ such that |w − ŵ | ≤ 1
2r with probability at least

1−
1

2m

the maximum number of qubits required is

n = r +m + 1

• In practice a much smaller error is obtained: for example, with
probability at least 8

π2 , the error will be at most

1

2r+m
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Exercises

Recall the definition of QFT on K basis states:

QFTK (|x⟩) =
1√
K

K−1∑
y=0

e2πi(
x
K )y |y⟩

Exercise 1
Compute QFTK (|00 · · · 0⟩).

Exercise 2
Verify the following equality, used in the slides but not proved.

QFTK (|x1 · · · xn⟩) =(
|0⟩ + e2πi(0.xn)|1⟩√

2

)
⊗

(
|0⟩ + e2πi(0.xnxn−1)|1⟩√

2

)
· · · ⊗ · · ·

(
|0⟩ + e2πi(0.x1x2···xn)|1⟩√

2

)
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Exercises

Hint to Exercise 2: The case of QFT4 applied to |x⟩ = |x1x2⟩

QFT4(|x⟩) =
1

2

3∑
y=0

e2πixy2
−2

|y⟩

=
1

2

1∑
y1,y2=0

e2πix(y12
−1+y22

−2) |y1y2⟩

because, for |y⟩ = |y1y2⟩,

y

2n
=

n∑
j=1

yj2
−j
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Exercises

Hint to Exercise 2: The case of QFT4 applied to |x⟩ = |x1x2⟩

· · · =
1

2

1∑
y1,y2=0

(e2πixy12
−1

|y1⟩ ⊗ e2πixy22
−2

|y2⟩)

=
1

2

1∑
y1=0

(e2πixy12
−1

|y1⟩ ⊗
1∑

y2=0

e2πixy22
−2

|y2⟩)

=
(|0⟩+ e2πix2

−1|1⟩)√
2

⊗ (|0⟩+ e2πix2
−2|1⟩)√

2

=
(|0⟩+ e2πi(x1.x2)|1⟩)√

2
⊗ (|0⟩+ e2πi(0.x1x2)|1⟩)√

2

=
(|0⟩+ e2πi(0.x2)|1⟩)√

2
⊗ (|0⟩+ e2πi(0.x1x2)|1⟩)√

2

because, e2πi(a.b) = e2πiae2πi(0.b) = e2πi(0.b)
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