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Simon’s problem

The problem
Let f : 2n −→ 2n be such that for some s ∈ 2n,

f (x) = f (y) iff x = y or x = y ⊕ s

Find s.

Exercise
What characterises f if s = 0? And if s ̸= 0?
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Simon’s problem

Exercise

• f is bijective if s = 0, because y ⊕ 0 = 0.

• f is two-to-one otherwise ,because, for a given s there is only a pair
of values x , y such that x ⊕ y = s.

Let us assume f to be two-to-one, and rewrite the problem as follows:

Equivalent formulation as a period-finding problem
Determine the period s of a function f periodic under ⊕:

f (x ⊕ s) = f (x)
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Simon’s problem

Example
Let f : 23 −→ 23 be defined as

x f (x)
000 101
001 010
010 000
011 110
100 000
101 110
110 101
111 010

Cleary s = 110. Indeed, every output of f occurs twice, and the bitwise
XOR of the corresponding inputs gives s.
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Simon’s problem, classically

Compute f for sequence of values until finding a value xj such that
f (xj) = f (xi ) for a previous xi , i.e. a colision. Then

xj ⊕ xi = xi ⊕ (xi ⊕ s) = s

• Since f is two-to-one, after collecting 2n−1 evaluations with no
collisions, the next evaluation must cause a collision.

• So in the worst case 2n−1 + 1 evaluations are needed.
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Simon’s problem, classically

Can we do better?
Actually, some problems for which there is a quantum exponential
advantage, admit classical probabilisitic interesting solutions, e.g.

Tackling Deutsch-Josza with Probabilities
To solve Deutsch-Josza with some margin of error evaluate two arbitrary
inputs x and y ,

• f (x) = f (y) =⇒ constant

• f (x) ̸= f (y) =⇒ balanced

Probability of giving the right answer?

• f is constant =⇒ right answer with probability 1

• f is balanced =⇒ right answer with probability 2n−1

2n = 1
2
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Simon’s problem, classically

which can still be improved:

Tackling Deutsch-Josza with Probabilities
To solve the problem with some margin of error evaluate k arbitrary
inputs x1, . . . , xk ,

• output always the same =⇒ constant

• otherwise =⇒ balanced

Probability of giving the right answer?

• f is constant =⇒ right answer with probability 1

• f is balanced =⇒ right answer with probability . . .

1−
(

2n−1

2n

)k

= 1− 1
2k

Probability of observing the same output in k tries
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Simon’s problem, classically

Actually, some problems for which there is a quantum exponential
advantage, admit classical probabilisitic interesting solutions, e.g.

Deutsch-Joza

• Classical deterministic: requires 2n−1 + 1 queries in the worst case,

• Classical probabilisitic: requires 2 queries with a probability of error
at most 1

3 (i.e. 1 1
2 + 1

2 ∗ 1
2 )

• Quantum: requires 1 query.

However, for the Simon’s problem an exponential number of queries to
the oracle accessing f are required by any classical probabilisitic
algorithm.
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Simon’s problem, classically

Compute f for sequence of values until finding a value xj such that
f (xj) = f (xi ) for a previous xi , i.e. a colision. Then

xj ⊕ xi = xi ⊕ (xi ⊕ s) = s

How many evaluations do we need to have a collision with probability p?

To have a collision with probability p = 1
k ≤ 1

2 we need

≈
√
(2 · 2n) · p =

√
2
k · 2n =

√
2
k · 2 n

2 evaluations

See the Birthday’s problem

But a quantum algorithm solves the problem in polynomial time with

probability ≈ 1
4
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Note: The birthday problem

Seeks to determine the probability that, in a set of n randomly chosen
people, at least two will share a birthday.

n = 23 leads to p(n) ≈ 0.5
Let the universe be U = 365 (days) and n = 23.
Un is the space of birthdays and V = U!

(U−n)! (n permutations of U) the

number of birthdays with no repetitions.
Then,

p(n) = 1−
V

Un
≈ 1− 0.493 ≈ 0.507

Heuristic for cases leading with p(n) ≤ 0.5

p(n) ≈ n2

U
⇒ n ≈

√
2U ∗ p(n)

which yields for p(n) = 0.5, n ≈ 19.
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Simon’s algorithm: The key steps

1. Prepare a superposition 1√
2
(|x⟩+ |x ⊕ s⟩) for some string x

2. Use interference to find s (indeed, to extract a string y s.t. y · s = 0)

3. Repeat previous steps n − 1 times to obtain system of equations s.t.
yk · s = 0

4. Solve the system for s using Gaussian elimination

Complexity n3
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Simon’s algorithm: Preparing the superposition

n

n

|0⟩ H⊗n

Uf

|0⟩
Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f (x)⟩

Uf (H
⊗n ⊗ I ) |0⟩ |0⟩ = Uf

( 1√
2n

∑
x∈2n

|x⟩ |0⟩
)

=
1√
2n

∑
x∈2n

|x⟩ |f (x)⟩

The state after the oracle can be rewritten as

1√
2n−1

∑
x∈P

1√
2
(|x⟩+ |x ⊕ s⟩)|f (x)⟩ (1)

Set P is composed of one representative of each of the 2n−1 sets of
strings {x , x ⊕ s}, into which 2n can be partitioned.
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Simon’s Algorithm: Preparing the superposition
n

n

|0⟩ H⊗n

Uf

|0⟩
Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f (x)⟩

If the result of measuring the bottom qubits is f (x), then the top ones
will contain superposition

1√
2
(|x⟩+ |x ⊕ s⟩)

as they are the unique values yielding f (x).

i.e. a measurement of the bottom qubits chooses randomly one of the
2n−1 possible outcomes of f ...

as f gives the same output for x and x ⊕ s, to 2n possible inputs
correspond 2n−1 possible outcomes.
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Simon’s Algorithm: Interference to find s

n n
H⊗n

Recall

H |x⟩ =
1√
2

∑
z∈2

(−1)xz |z⟩

Exercise
Show this extends to a n-qubit as follows

H⊗n|x⟩ = H |x1⟩H |x2⟩ · · ·H |xn⟩

=
1√
2n

∑
z∈2n

(−1)x·z |z⟩

where x .z denotes the bitwise product of x and z , modulo 2, or bitwise
conjunction. Conjunction is denoted by juxtaposition.
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Simon’s Algorithm: Interference to find s

H⊗n|x⟩ = H |x1⟩H |x2⟩ · · ·H |xn⟩

=
1√
2

∑
z1∈2n

(−1)x1z1 |z1⟩ +
1√
2

∑
z2∈2n

(−1)x2z2 |z⟩ · · · 1√
2

∑
zn∈2n

(−1)xnzn |zn⟩

=
1√
2n

∑
z1,z2,··· ,zn∈2n

(−1)x1z1+x2z2+···+xnzn |z1z2 · · · zn⟩

=
1√
2n

∑
z∈2n

(−1)x·z |z⟩
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Simon’s Algorithm: Interference to find s

H⊗n ⊗ I

(
1√
2
(|x⟩+ |x ⊕ s⟩)|f (x)⟩

)

=
1√
2n

∑
z∈2n

1√
2
((−1)x·z + (−1)(x⊕s)·z)|z⟩|f (x)⟩

=
1√
2n

∑
z∈2n

1√
2
((−1)x·z + (−1)(x·z)⊕(s·z)|z⟩|f (x)⟩

=
1√
2n

∑
z∈2n

1√
2
((−1)x·z + (−1)(x·z)(−1)(x·z)|z⟩|f (x)⟩

=
1√
2n+1

∑
z∈2n

(−1)x·z(1+ (−1)s·z)︸ ︷︷ ︸
(⋆)

|z⟩|f (x)⟩
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Simon’s Algorithm: Interference to find s

1√
2n+1

∑
z∈2n

(−1)x·z(1+ (−1)s·z)︸ ︷︷ ︸
(⋆)

|z⟩|f (x)⟩

• s · z = 1 ⇒ (⋆) = 0 and the corresponding basis state |z⟩ vanishes
• s · z = 0 ⇒ (⋆) ̸= 0: and the corresponding basis state |z⟩ is kept.

In this case the probability of geting z upon measurement is 1
2n−1

(why?)
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Simon’s Algorithm: Interference to find s

This state can be presented as a uniform superposition as follows:

1√
2n+1

∑
z∈2n

(−1)x·z(1+ (−1)s·z) |z⟩|f (x)⟩

=
1√
2n+1

∑
z∈S⊥

2(−1)x·z |z⟩|f (x)⟩

=
1√
2n−1

∑
z∈S⊥

(−1)x·z |z⟩|f (x)⟩

where S⊥, for S = {0, s} is the orthogonal complement of subspace S ,
with dim(S⊥) = n − 1
(because dim(S) = 1, as S is the subspace generated by s)
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S and S⊥

Both are subspaces of the vector space Z n
2 whose vectors are strings of

length n over Z2 = {0, 1}.

• The dimension of Z n
2 is n; a basis is provided by strings with exactly

one 1 in the kth position (for k = 1, 2, · · · , n).
• Two vectors v , u in Z n

2 are orthogonal iff v · u = 0 (operation · acts
as the internal product).

• Thus, for any subspace F of Z n
2 , F

⊥ = {u ∈ Z n
2 | ∀v∈F . u · v = 0}

Warning: to not confuse with the Hilbert space in which the algorithm is
executed and whose basis are labelled by elements of Z n

2 .



Simon’s problem Simon’s algorithm The general problem

Simon’s algorithm: The circuit

state preparation s extraction by interference

n

n

|0⟩ H⊗n

Uf

H⊗n

|0⟩
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Simon’s Algorithm: Computing s

Running this circuit and measuring the control register results in some z
in (Z2)

n satisfying
s · z = 0 ,

the distribution being uniform over all the strings that satisfy this
constraint.

Exercise
In the previous discussion we assumed that s ̸= 0. Show that the
conclusion above is still valid if s = 0.
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Simon’s Algorithm: Computing s
Thus, it is enough to repeat this procedure until n − 1 linearly
independent values {z1, z2. · · · , zn−1} are found, and solve the following
set of n − 1 equations in n unknowns (corresponding to the bits of s):

z1 · s = 0

z2 · s = 0

...

zn−1 · s = 0

to determine s. Actually,

span{z1, z2, · · · , zn−1} = S⊥ and {z1, z2, · · · , zn−1} forms a base for S⊥

Thus, s is the unique non-zero solution of

Z s = 0

where Z is the matrix whose line i corresponds to vector zi .
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Simon’s Algorithm: Computing s

Which is the probability of obtaining such a system of equations by
running the circuit n − 1 times?
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Simon’s slgorithm: Probability of success

Exercise
If s ̸= 0 then for half of the inputs y we have y · s = 0 and for the
other half y · s = 1

# Possibilities of failure at each step Probability of failure

1 {0} 20

2n−1

2 {0, y1}
21

2n−1

3 {0, y1, y2, y1 ⊕ y2}
22

2n−1

. . . . . . . . .

n − 1 {0, y1, y2, y3 . . . }
2n−2

2n−1
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Simon’s slgorithm: Probability of success

# Possibilities of failure at each step Probability of failure

1 {0} 20

2n−1

2 {0, y1}
21

2n−1

3 {0, y1, y2, y1 ⊕ y2}
22

2n−1

. . . . . . . . .

n − 1 {0, y1, y2, y3 . . . }
2n−2

2n−1

Table yields the sequence of probabilities of failure,

1
2 ,

1
4 ,

1
8 , . . . ,

1
2n−1 (from bottom to top)

Probability of failing in the first n − 2 steps is thus

1
4 + 1

8 + · · · = 1
4

(
1+ 1

2 + . . .
)
≤ 1

4 ·
(∑

i∈N
1
2i

)
= 1

2

Geometric series whose sum is equal to two
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Simon’s algorithm: Probability of success

• Probability of succeeding in the first n − 2 steps at least 1
2

• Probability of succeeding in the (n − 1)-th step is 1
2

• Thus probability of succeeding in all n − 1 steps at least 1
4

More advanced maths tell that the probability is slightly higher
(around 0.28878 . . . )
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The algorithm

1. Prepare the initial state 1√
2n

∑
x∈2n |x⟩|0⟩ and make i := 1

2. Apply the oracle Uf to obtain the state

1√
2n

∑
x∈2n

|x⟩|f (x)⟩

which can be re-written as

1√
2n−1

∑
x∈P

1√
2
(|x⟩+ |x ⊕ s⟩)|f (x)⟩

and measure the bottom qubits not strictly necessary but makes the
analysis simpler.

3. Apply H⊗n to the top qubits yielding a uniform superposition of
elements of S⊥.
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The algorithm

4. Measure the first register and record the value observed zi , which is
a randomly selected element of S⊥.

5. If the dimension of the span of {z1, z2, · · · , zi } is less than n − 1,
increment i and to go step 2; else proceed.

6. Compute s as the unique non-zero solution of

Z s = 0

The crucial observation is that the set of observed values must form a
basis to S⊥.
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The problem

The problem
Let f : 2n −→ X , for some X finite, be such that,

f (x) = f (y) iff x − y ∈ S

for some subspace S of Z n
2 with dimension m.

Find a basis {s1, s2, · · · sm} for S .

In Simon’s problem

• x = y ⊕ s, i.e. x − y = s.

• s is a basis for the space S generated by {s}.
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Note

The triple (Z n
2 ,⊕, 0) forms a group

Groups
A group (G , θ, u) is a set G with a binary operation θ which is
associative, and equipped with an identity element u and an inverse:

a−1θa = u = aθa−1

Each set {x , x ⊕ s} in (1) is a coset of subgroup S = ({0, s},⊕, 0)

Coset
The coset of a subgroup S of a group (G , θ) wrt g ∈ G is

gS = {gθs | s ∈ S}

In this case
xS = {x ⊕ 0, x ⊕ s} = {x , x ⊕ s}
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Generalised Simon’s algorithm
If S = {0, y1, · · · , y2m−1} is a subspace of dimension m of Z n

2 , 2
n can be

decomposed into 2n−m cosets of the form

{x , x ⊕ y1, x ⊕ y2, · · · , x ⊕ y2m−1}

Then Step 2 yields∑
x∈2n

|x⟩|f (x)⟩

=
1√
2n−m

∑
x∈P

1√
2m

(|x⟩+ |x ⊕ y1⟩+ |x ⊕ y2⟩+ · · ·+ x ⊕ y2m−1)|f (x)⟩

=
1√
2n−m

∑
x∈P

|x + S⟩|f (x)⟩

where P be a subset of 2n consisting of one representative of each 2n−m

disjoint cosets, and

|x + S⟩ =
∑
s∈S

1√
2m

|s⟩
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Generalised Simon’s algorithm

• In step 4 the first register is left in a state of the form |x + S⟩ for a
random x .

• After applying the Hadamard transformation, the first register
contains a uniform superposition of elements of S⊥ and its
measurement yields a value sampled uniformly at random from S⊥.

This leads to the revised algorithm:

5. If the dimension of the span of {z1, z2, · · · , zi } is less than n −m,
increment i and to go step 2; else proceed.

6. Compute the system of linear equations

Z s = 0

and let s1, s2, · · · , sm be the generators of the solution space. They
form the envisaged basis.
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The hidden subgroup problem

The group S is often called the hidden subgroup.
The (generalised) Simon’s algorithm is an instance of a much general
scheme, leading to exponential advantage, known as

The hidden subgroup problem
Let (G , θ, u) be a group and f : G −→ X for some finite set X with the
following property:

f is constant on cosets of S and distinct on different cosets

i.e.

there is a subgroup S of G such that for any x , y ∈ G ,

f (x) = f (y) iff xθS = yθS

Characterise S .
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