Quantum Computation
 Finding the period of a function （Simon＇s algorithm and its generalization）

Luís Soares Barbosa \＆Renato Neves

Universidade do Minho

HASLab
RIGHASSURANCE
SOFIWARE LABORGTORY

INTERNATIONAL IBERIAN
NANOTECHNOLOGY
NANOTECHNOLOGY
LABORATORY

MSc Physics Engineering
Universidade do Minho，2023－24

Simon's problem

The problem
Let $f: 2^{n} \longrightarrow 2^{n}$ be such that for some $s \in 2^{n}$,

$$
f(x)=f(y) \text { iff } x=y \text { or } x=y \oplus s
$$

Find s.

Exercise
What characterises f if $s=0$? And if $s \neq 0$?

Simon's problem

Exercise

- f is bijective if $s=0$, because $y \oplus 0=0$.
- f is two-to-one otherwise ,because, for a given s there is only a pair of values x, y such that $x \oplus y=s$.

Let us assume f to be two-to-one, and rewrite the problem as follows:

Equivalent formulation as a period-finding problem
Determine the period s of a function f periodic under \oplus :

$$
f(x \oplus s)=f(x)
$$

Simon's problem

Example

Let $f: 2^{3} \longrightarrow 2^{3}$ be defined as

x	$f(x)$
000	101
001	010
010	000
011	110
100	000
101	110
110	101
111	010

Cleary $s=110$. Indeed, every output of f occurs twice, and the bitwise XOR of the corresponding inputs gives s.

Simon's problem, classically

Compute f for sequence of values until finding a value x_{j} such that $f\left(x_{j}\right)=f\left(x_{i}\right)$ for a previous x_{i}, i.e. a colision. Then

$$
x_{j} \oplus x_{i}=x_{i} \oplus\left(x_{i} \oplus s\right)=s
$$

- Since f is two-to-one, after collecting 2^{n-1} evaluations with no collisions, the next evaluation must cause a collision.
- So in the worst case $2^{n-1}+1$ evaluations are needed.

Simon's problem, classically

Can we do better?
Actually, some problems for which there is a quantum exponential advantage, admit classical probabilisitic interesting solutions, e.g.

Tackling Deutsch-Josza with Probabilities

To solve Deutsch-Josza with some margin of error evaluate two arbitrary inputs x and y,

- $f(x)=f(y) \Longrightarrow$ constant
- $f(x) \neq f(y) \Longrightarrow$ balanced

Probability of giving the right answer?

- f is constant \Longrightarrow right answer with probability 1
- f is balanced \Longrightarrow right answer with probability $\frac{2^{n-1}}{2^{n}}=\frac{1}{2}$

Simon's problem, classically

which can still be improved:
Tackling Deutsch-Josza with Probabilities
To solve the problem with some margin of error evaluate k arbitrary inputs x_{1}, \ldots, x_{k},

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

Probability of giving the right answer?

- f is constant \Longrightarrow right answer with probability 1
- f is balanced \Longrightarrow right answer with probability ...

$$
\begin{gathered}
1-\left(\frac{2^{n-1}}{2^{n}}\right)^{k}=1-\frac{1}{2^{k}} \\
\downarrow
\end{gathered}
$$

Probability of observing the same output in k tries

Simon's problem, classically

Actually, some problems for which there is a quantum exponential advantage, admit classical probabilisitic interesting solutions, e.g.

Deutsch-Joza

- Classical deterministic: requires $2^{n-1}+1$ queries in the worst case,
- Classical probabilisitic: requires 2 queries with a probability of error at most $\frac{1}{3}$ (i.e. $1 \frac{1}{2}+\frac{1}{2} * \frac{1}{2}$)
- Quantum: requires 1 query.

However, for the Simon's problem an exponential number of queries to the oracle accessing f are required by any classical probabilisitic algorithm.

Simon's problem, classically

Compute f for sequence of values until finding a value x_{j} such that $f\left(x_{j}\right)=f\left(x_{i}\right)$ for a previous x_{i}, i.e. a colision. Then

$$
x_{j} \oplus x_{i}=x_{i} \oplus\left(x_{i} \oplus s\right)=s
$$

How many evaluations do we need to have a collision with probability p ?
To have a collision with probability $p=\frac{1}{k} \leq \frac{1}{2}$ we need

See the Birthday's problem
But a quantum algorithm solves the problem in polynomial time with probability $\approx \frac{1}{4}$

Note: The birthday problem

Seeks to determine the probability that, in a set of n randomly chosen people, at least two will share a birthday.
$n=23$ leads to $p(n) \approx 0.5$
Let the universe be $U=365$ (days) and $n=23$.
U^{n} is the space of birthdays and $V=\frac{U!}{(U-n)!}(n$ permutations of U) the number of birthdays with no repetitions.
Then,

$$
p(n)=1-\frac{V}{U^{n}} \approx 1-0.493 \approx 0.507
$$

Heuristic for cases leading with $p(n) \leq 0.5$

$$
p(n) \approx \frac{n^{2}}{U} \Rightarrow n \approx \sqrt{2 U * p(n)}
$$

which yields for $p(n)=0.5, n \approx 19$.

Simon's algorithm: The key steps

1. Prepare a superposition $\frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)$ for some string x
2. Use interference to find s (indeed, to extract a string y s.t. $y \cdot s=0$)
3. Repeat previous steps $n-1$ times to obtain system of equations s.t. $y_{k} \cdot s=0$
4. Solve the system for s using Gaussian elimination

Simon's algorithm: Preparing the superposition

$$
\begin{gathered}
|0\rangle \xrightarrow[U_{f}|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle]{H^{\otimes n}} \\
|0\rangle \xrightarrow[U_{f}]{U^{n}} \\
U_{f}\left(H^{\otimes n} \otimes I\right)|0\rangle|0\rangle=U_{f}\left(\frac{1}{\sqrt{2^{n}}} \sum_{x \in 2^{n}}|x\rangle|0\rangle\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x \in 2^{n}}|x\rangle|f(x)\rangle
\end{gathered}
$$

The state after the oracle can be rewritten as

$$
\begin{equation*}
\frac{1}{\sqrt{2^{n-1}}} \sum_{x \in P} \frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle \tag{1}
\end{equation*}
$$

Set P is composed of one representative of each of the 2^{n-1} sets of strings $\{x, x \oplus s\}$, into which 2^{n} can be partitioned.

Simon's Algorithm: Preparing the superposition

If the result of measuring the bottom qubits is $f(x)$, then the top ones will contain superposition

$$
\frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)
$$

as they are the unique values yielding $f(x)$.
i.e. a measurement of the bottom qubits chooses randomly one of the 2^{n-1} possible outcomes of $f \ldots$
as f gives the same output for x and $x \oplus s$, to 2^{n} possible inputs correspond 2^{n-1} possible outcomes.

Simon's Algorithm: Interference to find s

Recall

$$
H|x\rangle=\frac{1}{\sqrt{2}} \sum_{z \in 2}(-1)^{x z}|z\rangle
$$

Exercise

Show this extends to a n-qubit as follows

$$
\begin{aligned}
H^{\otimes n}|x\rangle & =H\left|x_{1}\right\rangle H\left|x_{2}\right\rangle \cdots H\left|x_{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}(-1)^{x \cdot z}|z\rangle
\end{aligned}
$$

where $x . z$ denotes the bitwise product of x and z, modulo 2 , or bitwise conjunction. Conjunction is denoted by juxtaposition.

Simon's Algorithm: Interference to find s

$$
\begin{aligned}
H^{\otimes n|x\rangle} & =H\left|x_{1}\right\rangle H\left|x_{2}\right\rangle \cdots H\left|x_{n}\right\rangle \\
& =\frac{1}{\sqrt{ }} \sum_{z_{1} \in 2^{n}}(-1)^{x_{1} z_{1} \mid}\left|z_{1}\right\rangle+\frac{1}{\sqrt{2}} \sum_{z_{2} \in 2^{n}}(-1)^{x_{2} z_{2} \mid}|z\rangle \cdots \frac{1}{\sqrt{2}} \sum_{z_{n} \in 2^{n}}(-1)^{x_{n} z_{n} \mid}\left|z_{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{z_{1}, z_{2}, \cdots, z_{n} \in 2^{n}}(-1)^{x_{1} z_{1}+x_{2} z_{2}+\cdots+x_{n} z_{n}\left|z_{1} z_{2} \cdots z_{n}\right\rangle} \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}(-1)^{x^{x}|z\rangle}|z\rangle
\end{aligned}
$$

Simon's Algorithm: Interference to find s

$$
\begin{aligned}
& H^{\otimes n} \otimes I\left(\frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle\right) \\
= & \frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}} \frac{1}{\sqrt{2}}\left((-1)^{x \cdot z}+(-1)^{(x \oplus s) \cdot z}\right)|z\rangle|f(x)\rangle \\
= & \frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}} \frac{1}{\sqrt{2}}\left((-1)^{x \cdot z}+(-1)^{(x \cdot z) \oplus(s \cdot z)|z\rangle|f(x)\rangle}\right. \\
= & \frac{1}{\sqrt{2^{2}}} \sum_{z \in 2^{n}} \frac{1}{\sqrt{2}}\left((-1)^{x \cdot z}+(-1)^{(x \cdot z)}(-1)^{(x \cdot z)}|z\rangle|f(x)\rangle\right. \\
= & \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^{n}} \underbrace{(-1)^{x \cdot z}\left(1+(-1)^{s \cdot z)}\right.}_{(*)}|z\rangle|f(x)\rangle
\end{aligned}
$$

Simon's Algorithm: Interference to find s

$$
\frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^{n}} \underbrace{(-1)^{x \cdot z}\left(1+(-1)^{s \cdot z}\right)}_{(\star)}|z\rangle|f(x)\rangle
$$

- $s \cdot z=1 \Rightarrow(\star)=0$ and the corresponding basis state $|z\rangle$ vanishes
- $s \cdot z=0 \Rightarrow(\star) \neq 0$: and the corresponding basis state $|z\rangle$ is kept. In this case the probability of geting z upon measurement is $\frac{1}{2^{n-1}}$ (why?)

Simon's Algorithm: Interference to find s

This state can be presented as a uniform superposition as follows:

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^{n}}(-1)^{x \cdot z}\left(1+(-1)^{s \cdot z}\right)|z\rangle|f(x)\rangle \\
= & \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in S^{\perp}} 2(-1)^{x \cdot z}|z\rangle|f(x)\rangle \\
= & \frac{1}{\sqrt{2^{n-1}}} \sum_{z \in S^{\perp}}(-1)^{x \cdot z}|z\rangle|f(x)\rangle
\end{aligned}
$$

where S^{\perp}, for $S=\{0, s\}$ is the orthogonal complement of subspace S, with $\operatorname{dim}\left(S^{\perp}\right)=n-1$
(because $\operatorname{dim}(S)=1$, as S is the subspace generated by s)

S and S^{\perp}

Both are subspaces of the vector space Z_{2}^{n} whose vectors are strings of length n over $Z_{2}=\{0,1\}$.

- The dimension of Z_{2}^{n} is n; a basis is provided by strings with exactly one 1 in the k th position (for $k=1,2, \cdots, n$).
- Two vectors v, u in Z_{2}^{n} are orthogonal iff $v \cdot u=0$ (operation \cdot acts as the internal product).
- Thus, for any subspace F of $Z_{2}^{n}, F^{\perp}=\left\{u \in Z_{2}^{n} \mid \forall_{v \in F} . u \cdot v=0\right\}$ Warning: to not confuse with the Hilbert space in which the algorithm is executed and whose basis are labelled by elements of Z_{2}^{n}.

Simon's algorithm: The circuit

Simon's Algorithm: Computing s

Running this circuit and measuring the control register results in some z in $\left(Z_{2}\right)^{n}$ satisfying

$$
s \cdot z=0
$$

the distribution being uniform over all the strings that satisfy this constraint.

Exercise
In the previous discussion we assumed that $s \neq 0$. Show that the conclusion above is still valid if $s=0$.

Simon's Algorithm: Computing s

Thus, it is enough to repeat this procedure until $n-1$ linearly independent values $\left\{z_{1}, z_{2} \ldots, z_{n-1}\right\}$ are found, and solve the following set of $n-1$ equations in n unknowns (corresponding to the bits of s):

$$
\begin{gathered}
z_{1} \cdot s=0 \\
z_{2} \cdot s=0 \\
\vdots \\
z_{n-1} \cdot s=0
\end{gathered}
$$

to determine s. Actually,

$$
\operatorname{span}\left\{z_{1}, z_{2}, \cdots, z_{n-1}\right\}=S^{\perp} \text { and }\left\{z_{1}, z_{2}, \cdots, z_{n-1}\right\} \text { forms a base for } S^{\perp}
$$

Thus, s is the unique non-zero solution of

$$
Z s=0
$$

where Z is the matrix whose line i corresponds to vector z_{i}.

Simon's Algorithm: Computing s

Which is the probability of obtaining such a system of equations by running the circuit $n-1$ times?

Simon's slgorithm: Probability of success

Exercise

If $s \neq 0$ then for half of the inputs y we have $y \cdot s=0$ and for the other half $y \cdot s=1$

$\#$	Possibilities of failure at each step	Probability of failure
1	$\{0\}$	$\frac{2^{0}}{2^{n-1}}$
2	$\left\{0, y_{1}\right\}$	$\frac{2^{1}}{2^{n-1}}$
3	$\left\{0, y_{1}, y_{2}, y_{1} \oplus y_{2}\right\}$	$\frac{2^{2}}{2^{n-1}}$
\ldots	\ldots	\cdots
$n-1$	$\left\{0, y_{1}, y_{2}, y_{3} \ldots\right\}$	$\frac{2^{n-2}}{2^{n-1}}$

Simon's slgorithm: Probability of success

$\#$	Possibilities of failure at each step	Probability of failure
1	$\{0\}$	$\frac{2^{0}}{2^{n-1}}$
2	$\left\{0, y_{1}\right\}$	$\frac{2^{1}}{2^{n-1}}$
3	$\left\{0, y_{1}, y_{2}, y_{1} \oplus y_{2}\right\}$	$\frac{2^{2}}{2^{n-1}}$
\ldots	\ldots	\cdots
$n-1$	$\left\{0, y_{1}, y_{2}, y_{3} \ldots\right\}$	$\frac{2^{n-2}}{2^{n-1}}$

Table yields the sequence of probabilities of failure,

$$
\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{2^{n-1}} \quad \text { (from bottom to top) }
$$

Probability of failing in the first $n-2$ steps is thus

$$
\begin{gathered}
\frac{1}{4}+\frac{1}{8}+\cdots=\frac{1}{4}\left(1+\frac{1}{2}+\ldots\right) \leq \frac{1}{4} \cdot\left(\sum_{i \in \mathbb{N}} \frac{1}{2^{i}}\right)=\frac{1}{2} \\
\downarrow
\end{gathered}
$$

Simon's algorithm: Probability of success

- Probability of succeeding in the first $n-2$ steps at least $\frac{1}{2}$
- Probability of succeeding in the $(n-1)$-th step is $\frac{1}{2}$
- Thus probability of succeeding in all $n-1$ steps at least $\frac{1}{4}$

More advanced maths tell that the probability is slightly higher (around 0.28878...)

The algorithm

1. Prepare the initial state $\frac{1}{\sqrt{2^{n}}} \sum_{x \in 2^{n}}|x\rangle|0\rangle$ and make $i:=1$
2. Apply the oracle U_{f} to obtain the state

$$
\frac{1}{\sqrt{2^{n}}} \sum_{x \in 2^{n}}|x\rangle|f(x)\rangle
$$

which can be re-written as

$$
\frac{1}{\sqrt{2^{n-1}}} \sum_{x \in P} \frac{1}{\sqrt{2}}(|x\rangle+|x \oplus s\rangle)|f(x)\rangle
$$

and measure the bottom qubits not strictly necessary but makes the analysis simpler.
3. Apply $H^{\otimes n}$ to the top qubits yielding a uniform superposition of elements of S^{\perp}.

The algorithm

4. Measure the first register and record the value observed z_{i}, which is a randomly selected element of S^{\perp}.
5. If the dimension of the span of $\left\{z_{1}, z_{2}, \cdots, z_{i}\right\}$ is less than $n-1$, increment i and to go step 2 ; else proceed.

6 . Compute s as the unique non-zero solution of

$$
Z s=0
$$

The crucial observation is that the set of observed values must form a basis to S^{\perp}.

The problem

The problem
Let $f: 2^{n} \longrightarrow X$, for some X finite, be such that,

$$
f(x)=f(y) \text { iff } x-y \in S
$$

for some subspace S of Z_{2}^{n} with dimension m.
Find a basis $\left\{s_{1}, s_{2}, \cdots s_{m}\right\}$ for S.

In Simon's problem

- $x=y \oplus$ s, i.e. $x-y=s$.
- s is a basis for the space S generated by $\{s\}$.

Note

The triple $\left(Z_{2}^{n}, \oplus, 0\right)$ forms a group

Groups

A group (G, θ, u) is a set G with a binary operation θ which is associative, and equipped with an identity element u and an inverse:

$$
a^{-1} \theta a=u=a \theta a^{-1}
$$

Each set $\{x, x \oplus s\}$ in (1) is a coset of subgroup $S=(\{0, s\}, \oplus, 0)$
Coset
The coset of a subgroup S of a group (G, θ) wrt $g \in G$ is

$$
g S=\{g \theta s \mid s \in S\}
$$

In this case

$$
x S=\{x \oplus 0, x \oplus s\}=\{x, x \oplus s\}
$$

Generalised Simon's algorithm

If $S=\left\{0, y_{1}, \cdots, y_{2^{m}-1}\right\}$ is a subspace of dimension m of $Z_{2}^{n}, 2^{n}$ can be decomposed into 2^{n-m} cosets of the form

$$
\left\{x, x \oplus y_{1}, x \oplus y_{2}, \cdots, x \oplus y_{2^{m}-1}\right\}
$$

Then Step 2 yields

$$
\begin{aligned}
& \sum_{x \in 2^{n}}|x\rangle|f(x)\rangle \\
= & \frac{1}{\sqrt{2^{n-m}}} \sum_{x \in P} \frac{1}{\sqrt{2^{m}}}\left(|x\rangle+\left|x \oplus y_{1}\right\rangle+\left|x \oplus y_{2}\right\rangle+\cdots+x \oplus y_{2^{m}-1}\right)|f(x)\rangle \\
= & \frac{1}{\sqrt{2^{n-m}}} \sum_{x \in P}|x+S\rangle|f(x)\rangle
\end{aligned}
$$

where P be a subset of 2^{n} consisting of one representative of each 2^{n-m} disjoint cosets, and

$$
|x+S\rangle=\sum_{s \in S} \frac{1}{\sqrt{2^{m}}}|s\rangle
$$

Generalised Simon's algorithm

- In step 4 the first register is left in a state of the form $|x+S\rangle$ for a random x.
- After applying the Hadamard transformation, the first register contains a uniform superposition of elements of S^{\perp} and its measurement yields a value sampled uniformly at random from S^{\perp}.

This leads to the revised algorithm:
5. If the dimension of the span of $\left\{z_{1}, z_{2}, \cdots, z_{i}\right\}$ is less than $n-m$, increment i and to go step 2; else proceed.
6. Compute the system of linear equations

$$
Z s=0
$$

and let $s_{1}, s_{2}, \cdots, s_{m}$ be the generators of the solution space. They form the envisaged basis.

The hidden subgroup problem

The group S is often called the hidden subgroup.
The (generalised) Simon's algorithm is an instance of a much general scheme, leading to exponential advantage, known as

The hidden subgroup problem
Let (G, θ, u) be a group and $f: G \longrightarrow X$ for some finite set X with the following property:
f is constant on cosets of S and distinct on different cosets
i.e.
there is a subgroup S of G such that for any $x, y \in G$,

$$
f(x)=f(y) \text { iff } x \theta S=y \theta S
$$

Characterise S.

