Quantum Computation Amplitude amplification

Luís Soares Barbosa \＆Renato Neves

Universidade do Minho

MSc Physics Engineering
Universidade do Minho，2023－24

Recall Grover's iterator $G=W U_{f}$

Eigenvector of U_{f} with -1 as eigenvalue introduction of local phases

run \sqrt{N} times

Question

Can Grover's algorithm be generalised to search in contexts with multiple solutions?

Multiple solutions

Assume there are M (out of $2^{n}=N$) input strings evaluating to 0 by f

$$
|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1}|x\rangle=\underbrace{\sqrt{\frac{M}{N}}|s\rangle}_{\text {solution }}+\underbrace{\sqrt{\frac{N-M}{N}}|r\rangle}_{\text {the rest }}
$$

where

$$
|s\rangle=\frac{1}{\sqrt{M}} \sum_{x \text { solution }}|x\rangle \text { and }|r\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \text { no solution }}|x\rangle
$$

Multiple solutions

$$
t=\left|\frac{\frac{\pi}{2}-\arcsin \sqrt{\frac{M}{N}}}{2 \theta}\right|
$$

which, for N large, $M \ll N$ (thus $\theta \approx \sin \theta$), yields

$$
t \approx \frac{\pi}{4} \sqrt{\frac{N}{M}}
$$

The probability to retrieve a correct solution is

$$
\left.\left|\langle s| G^{t}\right| \psi\right\rangle\left.\right|^{2} \geq \cos ^{2} \theta=1-\sin ^{2} \theta=\frac{N-M}{N}
$$

which, for $M=\frac{N}{2}$ yields $\frac{1}{2}$, but for $M \ll N$, is again close to 1 .

Multiple solutions

Computing the effect of $G: 2 \theta$

$$
2 \theta=\arcsin \left(2 \frac{\sqrt{M(N-M)}}{N}\right)
$$

M (out of 100)	$\sin 2 \theta$	2θ
0		
1		
20		
30		
40		
50		
60		
70		
80		
99		
M		

Multiple solutions

Computing the effect of $G: 2 \theta$

$$
2 \theta=\arcsin \left(2 \frac{\sqrt{M(N-M)}}{N}\right)
$$

M (out of 100)	$\sin 2 \theta$	2θ
0	0	0
1	0.198	0.199
20	0.8	0.927
30	0.916	1.158
40	0.979	1.365
50	1	1.571
60	0.979	1.365
70	0.916	1.158
80	0.8	0.927
99	0.198	0.199
M	0	0

Multiple solutions

Surprisingly, the rotation in each iteration decreases from $M=\frac{N}{2}$ to N, and the number of iterations consequently increases, although one would expect to be easier to find a correct solution if their number increases!

Solution: resort to draft paper!
To double the number of elements in the search space, by adding N extra elements, none of which being a solution.

The technique: Amplitude amplification

Grover's algorithm made use of

$$
H^{\otimes n}|0\rangle
$$

to prepare a uniform superposition of potential solutions.
In general, one may resort to any program K to map the solution space to any superposition of guesses, plus some extra qubits to be used as draft paper:

$$
K|0\rangle=\sum_{x} \alpha_{x}|x\rangle|\operatorname{draft}(x)\rangle
$$

The technique: Amplitude amplification

$$
|\psi\rangle=\sum_{x \text { solution }} \alpha_{x}|x\rangle|\operatorname{draft}(x)\rangle+\sum_{x \text { no solution }} \alpha_{x}|x\rangle|\operatorname{draft}(x)\rangle
$$

yielding the following probabilities:

$$
p_{s}=\sum_{x \text { solution }}\left|\alpha_{x}\right|^{2} \quad \text { and } \quad p_{n s}=\sum_{x \text { no solution }}\left|\alpha_{x}\right|^{2}=1-p_{s}
$$

Of course, amplification has no use if $p_{s} \in\{0,1\}$.

The technique: Amplitude amplification

Otherwise ($0<p_{s}<1$), the amplitudes of solution inputs should be amplified.
First, express

$$
|\psi\rangle=\sqrt{p_{s}}\left|\psi_{s}\right\rangle+\sqrt{p_{n s}}\left|\psi_{n s}\right\rangle
$$

for the normalised components

$$
\begin{aligned}
\left|\psi_{s}\right\rangle & =\sum_{x \text { solution }} \frac{\alpha_{x}}{\sqrt{p_{s}}}|x\rangle|\operatorname{draft}(x)\rangle \\
\left|\psi_{n s}\right\rangle & =\sum_{x \text { solution }} \frac{\alpha_{x}}{\sqrt{p_{n s}}}|x\rangle|\operatorname{draft}(x)\rangle
\end{aligned}
$$

which rewrites to

$$
|\psi\rangle=\sin \theta\left|\psi_{s}\right\rangle+\cos \theta\left|\psi_{n s}\right\rangle
$$

for $\theta \in\left[0, \frac{\pi}{2}\right]$ such that $\sin ^{2} \theta=p_{s}$.

The technique: Amplitude amplification

A generic search iterator is built as

$$
S=K P K^{-1} V=W_{K} V
$$

where

$$
\begin{aligned}
& W_{K}|\psi\rangle=|\psi\rangle \\
& W_{K}|\phi\rangle=-|\phi\rangle \text { for all states orthogonal to }|\psi\rangle
\end{aligned}
$$

The sets $\left\{\left|\psi_{s}\right\rangle,\left|\psi_{n s}\right\rangle\right\}$ and $\{|\psi\rangle,|\bar{\psi}\rangle\}$ are bases for the relevant 2-dimensional subspace.

The technique: Amplitude amplification

As expected, starting in $|\psi\rangle$, the oracle produces

$$
-\sin \theta\left|\psi_{s}\right\rangle+\cos \theta\left|\psi_{n s}\right\rangle=\cos (2 \theta)|\psi\rangle-\sin (2 \theta)|\bar{\psi}\rangle
$$

which, followed by the amplifier, yields

$$
\cos (2 \theta)|\psi\rangle+\sin (2 \theta)|\bar{\psi}\rangle
$$

i.e. the effect of iterator S is

$$
S|\psi\rangle=\cos (2 \theta)|\psi\rangle+\sin (2 \theta)|\bar{\psi}\rangle
$$

The technique: Amplitude amplification

Exercise
Show that

$$
S|\psi\rangle=\cos (2 \theta)|\psi\rangle+\sin (2 \theta)|\bar{\psi}\rangle
$$

can be expressed in the basis $\left\{\left|\psi_{s}\right\rangle,\left|\psi_{n s}\right\rangle\right\}$ as

$$
S|\psi\rangle=\sin (3 \theta)\left|\psi_{s}\right\rangle+\cos (3 \theta)\left|\psi_{n s}\right\rangle
$$

The technique: Amplitude amplification

$$
\begin{aligned}
S|\psi\rangle & =\cos (2 \theta)|\psi\rangle+\sin (2 \theta)|\bar{\psi}\rangle \\
& =\cos (2 \theta)\left(\sin \theta\left|\psi_{s}\right\rangle+\cos \theta\left|\psi_{n s}\right\rangle\right)+\sin (2 \theta)\left(\cos \theta\left|\psi_{s}\right\rangle-\sin \theta\left|\psi_{n s}\right\rangle\right) \\
& =\cos (2 \theta) \sin \theta\left|\psi_{s}\right\rangle+\cos (2 \theta) \cos \theta\left|\psi_{n s}\right\rangle+\sin (2 \theta) \cos \theta\left|\psi_{s}\right\rangle-\sin (2 \theta) \sin \theta\left|\psi_{n s}\right\rangle \\
& =(\cos (2 \theta) \sin \theta+\sin (2 \theta) \cos \theta)\left|\psi_{s}\right\rangle+(\cos (2 \theta) \cos \theta-\sin (2 \theta) \sin \theta)\left|\psi_{n s}\right\rangle \\
& =\left(\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sin \theta+\sin (2 \theta) \cos \theta\right)\left|\psi_{s}\right\rangle+\left(\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cos \theta-\sin (2 \theta) \sin \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(\cos ^{2} \theta \sin \theta-\sin ^{2} \theta \sin \theta+\sin (2 \theta) \cos \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{2} \theta \cos \theta-\sin ^{2} \theta \cos \theta-\sin (2 \theta) \sin \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(\cos ^{2} \theta \sin \theta-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{3} \theta-\sin ^{2} \theta \cos \theta-2 \sin ^{2} \theta \cos \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(\cos ^{2} \theta \sin \theta-\sin ^{3} \theta+2 \sin \theta \cos ^{2} \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{3} \theta-\sin ^{2} \theta \cos \theta-2 \sin ^{2} \theta \cos \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(3\left(1-\sin ^{2} \theta\right) \sin ^{2} \theta-\sin ^{3} \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{3} \theta-3\left(1-\cos ^{2} \theta\right) \cos \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta\right)\left|\psi_{s}\right\rangle+\left(\cos ^{3} \theta-3 \cos \theta+3 \cos ^{2} \theta\right)\left|\psi_{n s}\right\rangle \\
& =\left(3 \sin \theta-4 \sin ^{3} \theta\right)\left|\psi_{s}\right\rangle+\left(4 \cos ^{3} \theta-3 \cos \theta\right)\left|\psi_{n s}\right\rangle \\
& =\sin (3 \theta)\left|\psi_{s}\right\rangle+\cos (3 \theta)\left|\psi_{n s}\right\rangle
\end{aligned}
$$

The technique: Amplitude amplification

By an inductive argument, the repeated application of S a total of k times rotates the initial state $|\psi\rangle$ to

$$
S^{k}|\psi\rangle=\sin ((2 k+1) \theta)\left|\psi_{s}\right\rangle+\cos ((2 k+1) \theta)\left|\psi_{n s}\right\rangle
$$

For the correct number of iterations, this procedure reaches a state such that a measurement will return an element of the subspace spanned by $\left|\psi_{s}\right\rangle$ with a probability close to 1 .

The technique: Amplitude amplification

As before, to get that high probability, the smallest value for k one can choose is such that

$$
(2 k+1) \theta \approx \frac{\pi}{2}
$$

For a small θ, as

$$
\sin \theta=\sqrt{p_{s}} \approx \theta
$$

the magnitude of the right number of iterations is

$$
\mathcal{O}\left(\sqrt{\frac{1}{\theta}}\right)
$$

because

$$
(2 k+1) \sqrt{p_{s}}=\theta \Leftrightarrow k=\frac{\pi}{4 \sqrt{p_{s}}}-\frac{1}{2}
$$

To follow

The algorithm requires that one knows in advance how many times iterator S is to be applied:

- For $K=H$ (uniform sampling the input) this boils down to know the number of solutions of the search problem.
- For a generic K this amounts to know the probability with which K guesses a solution to the problem, i.e. $\sin (\theta)$.

To see ...

- blind search
- estimate the amplitude with which K maps $|0\rangle$ to the subspace of solutions

PROBLEM 1

Consider a search space $N=4$, with $M=2$.

- How many iterations are required to find the correct solution with high probability? Why? Which is the angle of the rotation in each iteration?
- How many queries to the oracle would be necessary under a classical computer?
- Discuss whether the circuit below performs the phase shift operation $2|0\rangle\langle 0|-I$, up to an irrelevant global phase factor.

- Prove the Grover iterator G is, as expected, unitary.

PROBLEM 2

SAT (= Boolean satisfiability) problems

Determining values for Boolean variables so that a given Boolean expression evaluates to true

- NP-complete
- Many problems, like scheduling, can be converted into a SAT
- Can be seen as a search problem whose goal is to find a precise combination of Boolean values that yields true

PROBLEM 2

Mini project

Implement Grover's Algorithm in Qiskit to find a satisfying assignment containing one true literal per clause.

- INPUT: SAT formula in conjunctive normal form, i.e. a conjunction of disjunctive clauses $\bigvee_{k=1 . . m} \phi_{k}$ over n Boolean variables with 3 literals per clause.
- OUTPUT: Is there an assignment to the n Boolean variables such that every clause has exactly one true literal?

PROBLEM 2

Note: Creating a uniform superposition of all basis states does not allow to satisfactorily solve NP-complete problems

Let U_{f} encode a SAT formula on n Boolean variables:

$$
U_{f}(|i\rangle \otimes|0\rangle)=|i\rangle \otimes|f(i)\rangle
$$

Applying U_{f} to a superposition obtained via $H^{\otimes n}|0\rangle$, which evaluates the truth assignment of all possible binary strings, will return a binary string that satisfies the formula iff the last qubit has value 1 after the measurement, and this happens with a probability that depends on the number of binary assignments that satisfy the formula (e.g. $\frac{\tau}{2^{n}}$, for τ such assignments).

Second thoughts

Although, in general, solving NP-hard problems in polynomial time with quantum computers is probably not possible (cf $P=N P$?), there is a recipe to produce faster equivalent quantum algorithms:

- Create a uniform superposition of basis states
- Make the basis states interact with each other so that the modulus of the coefficients for some (desirable) basis states increase, which implies that the other coefficients decrease.
- How to do it ... depends on the problem

