Quantum Computation
 The phase kick-back effect:
 Bernstein-Varziani and Deutsch-Joza algorithms

Luís Soares Barbosa \& Renato Neves

Universidade do Minho

HASLab
HIGH:ASSUFANCE
SOFTYARE LABORATORY

MSc Physics Engineering
Universidade do Minho, 2023-24

The phase kick-back pattern

Recall that every quantum operation gives rise to a controlled quantum operation:

Let v be an eigenvector of $U\left(\right.$ i.e. $U v=e^{i \theta} v$) and calculate

$$
\begin{aligned}
& c U((\alpha|0\rangle+\beta|1\rangle) \otimes v) \\
& =c U(\alpha|0\rangle \otimes v+\beta|1\rangle \otimes v) \\
& =\alpha|0\rangle \otimes v+\beta|1\rangle \otimes U v \\
& =\alpha|0\rangle \otimes v+\beta|1\rangle \otimes e^{i \theta} v \\
& =\left(\alpha|0\rangle+e^{i \theta} \beta|1\rangle\right) \otimes v
\end{aligned}
$$

The phase kick-back pattern

What just happened?

- Global phase $e^{i \theta}$ (introduced to v) was 'kicked-back' as a relative phase in the control qubit
- Some information of U is now encoded in the control qubit

In general kicking-back such phases causes interference patterns that give away information about U

A parenthesis on global/local phase

Global phase factor

Definition

Let $v, u \in \mathbb{C}^{2^{n}}$ be vectors. If $u=e^{i \theta} v$ we say that it is equal to v up to global phase factor $e^{i \theta}$

Theorem
$e^{i \theta} v$ and v are indistinguishable in the world of quantum mechanics
Proof sketch
Show that equality up to global phase is preserved by operators and normalisation + show that probability outcomes associated with v and $e^{i \theta} v$ are the same

Relative phase factor

Definition

We say that vectors $\sum_{x \in 2^{n}} \alpha_{x}|x\rangle$ and $\sum_{x \in 2^{n}} \beta_{x}|x\rangle$ differ by a relative phase factor if for all $x \in 2^{n}$

$$
\left.\alpha_{x}=e^{i \theta_{x}} \beta_{x} \quad \text { (for some angle } \theta_{x}\right)
$$

Example
Vectors $|0\rangle+|1\rangle$ and $|0\rangle-|1\rangle$ differ by a relative phase factor.
Vectors that differ by a relative phase factor are distinguishable

End of parenthesis

Basic example: $U=c X$

Thus, e.g.

$$
c x\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

The phase jumps, or is kicked back, from the second to the first qubit.

Basic example: $U=c X$

Actually, this happens because $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an eigenvector of

- X (with $\lambda=-1)$ and of $/($ with $\lambda=1)$
- and, thus, $X \frac{|0\rangle-|1\rangle}{\sqrt{2}}=-1 \frac{|0\rangle-|1\rangle}{\sqrt{2}}$ and $I \frac{|0\rangle-|1\rangle}{\sqrt{2}}=1 \frac{|0\rangle-|1\rangle}{\sqrt{2}}$

Thus,

$$
\begin{aligned}
c X|1\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & =|1\rangle\left(X\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right) \\
& =|1\rangle\left((-1)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\right) \\
& =-|1\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

while $c X|0\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=|0\rangle\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$

The phase kick-back pattern

Phase kick-back in $c X$ can be presented as

$$
c X|b\rangle|-\rangle=(-1)^{b}|b\rangle|-\rangle
$$

with $|b\rangle$ an element of the computational basis.

Revisiting Deutsch's problem

Oracle U_{f} can be seen as a generalised controlled not-operation

$$
\llbracket-\sqrt{f} \rrbracket \rrbracket=|x\rangle|y\rangle \mapsto \begin{cases}|x\rangle|y\rangle & \text { if } f(x)=0 \\ |x\rangle \neg|y\rangle & \text { if } f(x)=1\end{cases}
$$

Revisiting Deutsch's problem

Thus,

Analogously to the $c X$ case, phase kick-back can be represented as

$$
U_{f}|x\rangle|-\rangle=(-1)^{f(x)}|x\rangle|-\rangle
$$

The Bernstein-Vazirani algorithm

Let $2^{n}=\{0,1\}^{n}=\left\{0,1,2, \cdots 2^{n}-1\right\}$ be the set of non-negative integers represented as bit strings up to n bits)., Then, consider the following problem:

The problem
Let s be an unknown non-negative integer less than 2^{n}, encoded as a bit string, and consider a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ which hides secret s as follows: $f(x)=x \cdot s$, for some fixed bit-string s, where

$$
x \cdot s=x_{1} s_{1} \oplus x_{2} s_{2} \oplus \cdots \oplus x_{n} s_{n}
$$

i.e. the bitwise product of x and s, modulo 2 .

Note that juxtaposition abbreviates conjunction, i.e. $x_{1} s_{1}=x_{1} \wedge s_{1}$

Setting the stage

Lemma

(1) For $a, b \in\{0,1\}$ the equation $(-1)^{a}(-1)^{b}=(-1)^{a \oplus b}$ holds

Proof sketch
Build a truth table for each case and compare the corresponding contents
Lemma
(2) For any three binary strings $x, a, b \in\{0,1\}^{n}$ the equation
$(x \cdot a) \oplus(x \cdot b)=x \cdot(a \oplus b)$ holds
Proof sketch
Follows from the fact that for any three bits $a, b, c \in\{0,1\}$ the equation $(a \wedge b) \oplus(a \wedge c)=a \wedge(b \oplus c)$ holds

Setting the stage

Lemma

(3) For any element $|b\rangle$ in the computational basis of \mathbb{C}^{2},

$$
H|b\rangle=\frac{1}{\sqrt{2}} \sum_{z \in 2}(-1)^{b \wedge z}|z\rangle
$$

Proof sketch
Build a truth table and compare the corresponding contents

Theorem
(1) For any element $|b\rangle$ in the computational basis of $\mathbb{C}^{2^{n}}$,

$$
H^{\otimes n}|b\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}(-1)^{b \cdot z}|z\rangle
$$

Proof sketch

Follows by induction on the size of n

The Bernstein-Vazirani algorithm

 How many times one has to call f to determine s ?- Classically, we run f n-times by computing

$$
\begin{aligned}
f(1 \ldots 0) & =\left(s_{1} \wedge 1\right) \oplus \cdots \oplus\left(s_{n} \wedge 0\right)=s_{1} \\
& \vdots \\
f(0 \ldots 1) & =\left(s_{1} \wedge 0\right) \oplus \cdots \oplus\left(s_{n} \wedge 1\right)=s_{n}
\end{aligned}
$$

- With a quantum algorithm, we may discover s by running f only once

The circuit

The computation

$$
\begin{aligned}
& H^{\otimes n}|0\rangle|-\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}|z\rangle|-\rangle \\
& U_{f}^{\mapsto} \frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}(-1)^{f(z)}|z\rangle|-\rangle \\
& H^{\otimes n} \otimes l \\
& \mapsto \\
& \frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)|-\rangle \\
& =\frac{1}{2^{n}} \sum_{z \in 2^{n}} \sum_{z^{\prime} \in 2^{n}}(-1)^{(z \cdot s) \oplus\left(z \cdot z^{\prime}\right)}\left|z^{\prime}\right\rangle|-\rangle \\
& =\frac{1}{2^{n}} \sum_{z \in 2^{n}} \sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot\left(s \oplus z^{\prime}\right)}\left|z^{\prime}\right\rangle|-\rangle \\
& =|s\rangle|-\rangle
\end{aligned}
$$

\{Theorem (1) \}
\{Definition\}
\{Theorem (1)\}
\{Lemma (1) \}
\{Lemma (2) \}
\{Why?\}

Why?

$$
\cdots=\frac{1}{2^{n}} \sum_{z \in 2^{n}} \sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot\left(s \oplus z^{\prime}\right)}\left|z^{\prime}\right\rangle|-\rangle=\cdots
$$

For each $z^{\prime}, \frac{1}{2^{n}} \sum_{z=0}^{2^{n}-1}(-1)^{z \cdot\left(s \oplus z^{\prime}\right)}$ is 1 iff $\left(s \oplus z^{\prime}\right)=0$, which happens only if $s=z^{\prime} \ln$ all other cases $\frac{1}{2^{n}} \sum_{z=0}^{2^{n}-1}(-1)^{z \cdot\left(s \oplus z^{\prime}\right)}$ is 0 .
The reason is easy to guess:

- for $s \oplus z^{\prime}=0, \frac{1}{2^{n}} \sum_{z=0}^{2^{n}-1}(-1)^{z \cdot\left(s \oplus z^{\prime}\right)}=\frac{1}{2^{n}} \sum_{z=0}^{2^{n}-1} 1=1$.
- for $s \oplus z^{\prime} \neq 0$, as z spans all numbers from 0 to $2^{n}-1$, half of the 2^{n} factors in the sum will be -1 and the other half 1 , thus summing up to 0 .

Thus, the only non zero amplitude is the one associated to s.

Why?

Alternatively, consider the probability of measuring s at the end of the computation:

$$
\begin{aligned}
& \left|\frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{z \cdot(s \oplus s)}\right|^{2} \\
& =\left|\frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{z \cdot 0}\right|^{2} \\
& =\left|\frac{1}{2^{n}} \sum_{z \in 2^{n}} 1\right|^{2} \\
& =\left|\frac{2^{n}}{2^{n}}\right|^{2} \\
& =1
\end{aligned}
$$

This means that somehow all values yielding wrong answers were completely cancelled.

Deutsch-Josza

The Problem
Take a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, which is known to be either constant or balanced.

Find out which case holds.

Classically, we evaluate half of the inputs $\left(\frac{2^{n}}{2}=2^{n-1}\right)$, evaluate one more and run the decision procedure,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced
which requires running $f 2^{n-1}+1$ times.
A quantum algorithm replies by running f only once.

The circuit

The computation

$$
\begin{aligned}
& H^{\otimes n}|0\rangle|-\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}|z\rangle \\
& \stackrel{U_{f}}{\mapsto} \frac{1}{\sqrt{2^{n}}} \sum_{z \in 2^{n}}(-1)^{f(z)}|z\rangle|-\rangle \\
& \stackrel{H^{\otimes n} \otimes l}{\mapsto} \underbrace{\frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)}_{\square \text { upper qubits }}|-\rangle
\end{aligned}
$$

\{Theorem 1\}
\{Definition \}
\{Theorem 1\}

Developing \square by case distinction

f is constant

$$
\begin{aligned}
& \frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right) \\
& =\frac{1}{2^{n}}(\pm 1) \sum_{z \in 2^{n}}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)
\end{aligned}
$$

Therefore, the amplitude at state $|0\rangle$ is
f is constant at $1 \rightsquigarrow \frac{-\left(2^{n}\right)|\mathbf{0}\rangle}{2^{n}}=-|\mathbf{0}\rangle$
f is constant at $0 \rightsquigarrow \frac{\left(2^{n}\right)|\mathbf{0}\rangle}{2^{n}}=|\mathbf{0}\rangle$

Developing \square by case distinction

Actually the probability of measuring $|0\rangle$ at the end given by

$$
\begin{aligned}
& \left|\frac{1}{2^{n}}(\pm 1) \sum_{z \in 2^{n}}(-1)^{z \cdot 0}\right|^{2} \\
& =\left|\frac{1}{2^{n}}(\pm 1) \sum_{z \in 2^{n}} 1\right|^{2} \\
& =\left|\frac{2^{n}}{2^{n}}\right|^{2} \\
& =1
\end{aligned}
$$

So if f is constant we measure $|0\rangle$ with probability 1 .

Developing \square by case distinction

f is balanced

$$
\begin{aligned}
& \frac{1}{2^{n}} \sum_{z \in 2^{n}}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right) \\
& ={\frac{1}{2^{n}}}\left(\sum_{z \in 2^{n}, f(z)=0}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)\right. \\
& \left.\quad+\sum_{z \in 2^{n}, f(z)=1}(-1)^{f(z)}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)\right) \\
& =\frac{1}{2^{n}}\left(\sum_{z \in 2^{n}, f(z)=0}\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)\right. \\
& \left.\quad+\sum_{z \in 2^{n}, f(z)=1}(-1)\left(\sum_{z^{\prime} \in 2^{n}}(-1)^{z \cdot z^{\prime}}\left|z^{\prime}\right\rangle\right)\right)
\end{aligned}
$$

Developing \square by case distinction

Probability of measuring $|0\rangle$ at the end given by

$$
\begin{aligned}
& \left|\frac{1}{2^{n}}\left(\sum_{z \in 2^{n}, f(z)=0}(-1)^{z \cdot 0}+\sum_{z \in 2^{n}, f(z)=1}(-1)(-1)^{z \cdot 0}\right)\right|^{2} \\
& =\left|\frac{1}{2^{n}}\left(\sum_{z \in 2^{n}, f(z)=0} 1+\sum_{z \in 2^{n}, f(z)=1}(-1)\right)\right|^{2} \\
& =\left|\frac{1}{2^{n}}\left(\sum_{z \in 2^{n}, f(z)=0} 1-\sum_{z \in 2^{n}, f(z)=1} 1\right)\right|^{2} \\
& =0
\end{aligned}
$$

So if f is balanced we measure $|0\rangle$ with probability 0

Concluding

Deutsch problem

Classically, need to run f twice. With a quantum algorithm once is enough.

Berstein-Varziani problem

Classically, need to run $f n$ times. With a quantum algorithm once is enough.

Deutsch-Joza problem
Classically, need to evaluate half of the inputs $\left(\frac{2^{n}}{2}=2^{n-1}\right)$, evaluate one more and run the decision procedure,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

With a quantum algorithm once is enough.

