Quantum Computation 2022/23 TPC-1

Renato Neves

nevrenato@di.uminho.pt

Figure 1 presents the circuit respective to quantum teleportation. Analyse this circuit and then solve the two exercises below.

Figure 1: Quantum teleportation circuit.

Exercise 1. Write down the mathematical laws and definitions that were used at each step in the following computation. Note that the first step was already filled-in to serve as an example.

$$
\begin{aligned}
& (\alpha|0\rangle+\beta|1\rangle) \otimes\left(\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\right) \\
& =\{\text { Distributivity of scaling over addition and the tensor law } v \otimes s w=s(v \otimes w)\} \\
& =\frac{1}{\sqrt{2}}((\alpha|0\rangle+\beta|1\rangle) \otimes(|00\rangle+|11\rangle)) \\
& =\{\ldots\} \\
& =\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle) \\
& \mapsto\{\ldots\} \\
& =\frac{1}{\sqrt{2}}(\alpha|000\rangle+\alpha|011\rangle+\beta|110\rangle+\beta|101\rangle) \\
& =\{\ldots\} \\
& =\frac{1}{\sqrt{2}}(|0\rangle \otimes \alpha|00\rangle+|0\rangle \otimes \alpha|11\rangle+|1\rangle \otimes \beta|10\rangle+|1\rangle \otimes \beta|01\rangle) \\
& =\{\ldots\} \\
& =\frac{1}{\sqrt{2}}(|0\rangle \otimes(\alpha|00\rangle+\alpha|11\rangle)+|1\rangle \otimes(\beta|10\rangle+\beta|01\rangle)) \\
& \mapsto\{\ldots\}
\end{aligned}
$$

$=\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes(\alpha|00\rangle+\alpha|11\rangle)+\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \otimes(\beta|10\rangle+\beta|01\rangle)\right)$
$=\{\ldots\}$
$=\frac{1}{2}((|0\rangle+|1\rangle) \otimes(\alpha|00\rangle+|11\rangle)+(|0\rangle-|1\rangle) \otimes(\beta|10\rangle+\beta|01\rangle))$
$=\{\ldots\}$
$=\frac{1}{2}(\alpha|000\rangle+\alpha|011\rangle+\alpha|100\rangle+\alpha|111\rangle+\beta|010\rangle+\beta|001\rangle-\beta|110\rangle-\beta|101\rangle)$
$=\{\ldots\}$
$=\frac{1}{2}(|00\rangle \otimes(\alpha|0\rangle+\beta|1\rangle)+|01\rangle \otimes(\beta|0\rangle+\alpha|1\rangle)+|10\rangle \otimes(\alpha|0\rangle-\beta|1\rangle)+|11\rangle \otimes(-\beta|0\rangle+\alpha|1\rangle))$
Exercise 2. The quantum teleportation protocol (Figure 1) starts by putting the qubits shared by Alice and Bob in the entangled state $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. Show that after slight modifications the protocol will work equally well if these two qubits are put instead in the entangled state $\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$. Present the modified circuit in Qiskit and discuss how you can use the latter to test the circuit.

What to submit: A report in PDF containing the solutions to both exercises. Please send by email (nevrenato@gmail.com) your file named as "QC2223-N.PDF", where N is your student number. The subject of the email should be "QC2223-N".
Deadline: 24th October 2022 @ $23 h 59$

