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Period-Finding

The Problem
A periodic function f . Find its period.

Problem can be difficult (particularly if f has no obvious structure,
such as being trigonometric)

We will see how quantum computation tackles it
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Order-Finding

Actually we tackle only a specific case ⇒ order-finding

The latter is handled efficiently via QPE

Integer factorisation reduces to it

The only quantum component in Shor’s algorithm
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A Handful of Definitions

Definition
We call the integer x a divisor of the integer y if k · x = y for
some integer k

Examples
2 is a divisor of 10 and 5 is a divisor of 15. What are the divisors
of a prime number?

Definition
For two integers x and y , gcd(x , y) is the greatest divisor
common to x and y

Examples
gcd(8, 12) = 4 and gcd(10, 15) = 5
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A Handful of Definitions pt. II

Definition
Two integers x and y are called co-prime if gcd(x , y) = 1

Examples
8 and 9 are co-prime and 13 and 15 are co-prime as well. The
integers 12 and 15 are not co-prime.
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Modular Arithmetic

Definition
Given an integer N the set of integers mod N is {0, 1, . . . ,N − 1}

We can think of this set as a circular circuit with different positions
and where the position after N − 1 is 0

Definition
For two integers x and y we write x ≡ y (mod N) if x mod N = y

Examples
5 ≡ 0 (mod 5) and 6 ≡ 1 (mod 5)
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Order-Finding

Definition
For co-prime integers a < N the order of a (mod N) is the
smallest integer r > 0 s.t. ar ≡ 1 (mod N)

Example
If N = 5 the sequence 30, 31, 32, 33, 34, 35, 36, . . . leads to the
sequence 1, 3, 4, 2, 1, 3, 4, . . .

Order of 3 (mod 5) is thus 4

Exercise
What is the order of 2 (mod 11)?
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Order-Finding

The Problem
Co-prime integers a < N

What is the order of a (mod N)?

Classically, problem can be difficult for large integers

Quantumly, it can be solved efficiently via QPE
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QPE Revisited

Recall the QPE circuit

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U

Need to choose suitable U and |ψ⟩ to disclose the order
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Choosing the Right Unitary

Take co-prime integers a < N

Let m = ⌈log2 N⌉ and define U : C2m
! C2m

U |x⟩ =

|xa (mod N)⟩ if 0 ≤ x ≤ N − 1
|x⟩ otherwise

Exercise
Show that U |an (mod N)⟩ =

∣∣an+1 (mod N)
〉

Next step is to identify suitable eigenvectors
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Starting with an Example

Recall: if N = 5 sequence 30, 31, 32, 33, 34, 35, 36, . . . leads to
1, 3, 4, 2, 1, 3, 4, . . .

Order r of 3 (mod 5) is 4. We then calculate,

U
(

1√
r (|1⟩ + |3⟩ + |4⟩ + |2⟩

)
= U

(
1√
r

∑r−1
i=0

∣∣3i (mod 5)
〉 )

= 1√
r

∑r−1
i=0

∣∣3i+1 (mod 5)
〉

= 1√
r

(
|3⟩ + |4⟩ + |2⟩ + |1⟩

)
= 1√

r

(
|1⟩ + |3⟩ + |4⟩ + |2⟩

)
The latter state is therefore an eigenvector of U
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A First Approach

Previous example alludes to the equation

U
(

1√
r

∑r−1
i=0

∣∣ai (mod N)
〉 )

= 1√
r

∑r−1
i=0

∣∣ai (mod N)
〉

Unfortunately, corresponding eigenvalue is 1 = ei2π0 1
2n

It does not disclose any information about the period r :(

Need to find eigenvectors with more informative eigenvalues
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A Second Approach

Let ω = ei2π· 1
r (division of the unit circle in r slices)︸ ︷︷ ︸

a.k.a. the r roots of unity

U
(

1√
r

∑r−1
i=0 ω

−i ∣∣ai (mod N)
〉 )

= 1√
r

∑r−1
i=0 ω

−i ∣∣ai+1 (mod N)
〉

= 1√
r

∑r−1
i=0 ωω

−(i+1) ∣∣ai+1 (mod N)
〉

= ω
(

1√
r

∑r−1
i=0 ω

−(i+1) ∣∣ai+1 (mod N)
〉)

= ω
(

1√
r

∑r−1
i=0 ω

−i ∣∣ai (mod N)
〉)

Exercise
Formally justify all the steps in the calculation above
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A Second Approach

Let ω = ei2π· 1
r and |ψ1⟩ = 1√

r
∑r−1

i=0 ω
−i ∣∣ai (mod N)

〉
Previous slide says U |ψ1⟩ = ω |ψ1⟩

So if we feed QPE with U and |ψ1⟩ we obtain an approximation of
1
r with good success probability (≥ 4

π2 ≈ 0.4)

However |ψ1⟩ is difficult to construct. Can you see why?
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A Third Approach

We define a superposition of eigenvectors that is equal to |1⟩:

set |ψk⟩ = 1√
r

∑r−1
i=0 ω

−ik ∣∣ai (mod N)
〉

and |ψ⟩ = 1√
r

∑r−1
k=0 |ψk⟩

Exercise
Then show U |ψk⟩ = ωk |ψk⟩

Exercise
Finally show |ψ⟩ = |1⟩ (hint: show ⟨1|ψ⟩ = 1 or alternatively use
the closed-form formula of geometric series)
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A Third Approach

U |ψk⟩ = ωk |ψk⟩ = ei2π k
r |ψk⟩ and |ψ⟩ = 1√

r
∑r−1

i=0 |ψk⟩. Therefore

converts |0⟩ to Fourier basis

encodes info. in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U

returns 1√
r

∑r−1
k=0

(∣∣∣ϕ̃k
〉

|ψk⟩
)

where each
∣∣∣ϕ̃k

〉
is the best n-bit

approximation of k
r with probability ≥ 4

π2

But how to extract r from
∣∣∣ϕ̃k

〉
?
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Extracting the Period

Let φ be the best n-bit approximation of some k
r

Theorem

If
∣∣∣k

r − φ
∣∣∣ ≤ 1

2r2 then we can extract k
r in reduced form, and with

complexity O(m3)

Proof.
Uses the continued fractions alg. (see Appendix 4, Nielsen and
Chuang, Quantum Computation and Quantum Information)

Previous theorem tells we need to use a minimum number n of
qubits to represent φ. Particularly,
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Extracting the Period

recall: m = ⌈log2N⌉

2n+1 ≥ 2r2

⇐ 2n+1 ≥ 2(2m)2 {r ≤ N ≤ 2m}
⇐ 22n ≥ 2(2m)2

⇐ 2n ≥ 22m

⇐ n ≥ 2m

Thus the number of qubits to use in the approximation φ should
be at least 2m
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Finally. . .

In order to obtain the order r , proceed with the following steps

1. run QPE + continued fractions alg. twice to obtain two
reduced fractions k1

r1
and k2

r2

2. if gcd(k1, k2) ̸= 1 repeat previous step else set r := least
common multiple of r1 and r2

3. if ar (mod N) ≡ 1 output r else go back to step 1

In step 2, probability of gcd(k1, k2) = 1 is ≥ 1
4 . Hence whole

algorithm has constant probability of success

In step 2, computation of gcd and least common multiple has
complexity O(m2). Hence the whole algorithm must be efficient
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