An Application of QPE: Order-Finding

Renato Neves

Universidade do Minho

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

The Problem

A periodic function *f*. Find its period.

The Problem

A periodic function *f*. Find its period.

Problem can be difficult (particularly if f has no obvious structure, such as being trigonometric)

We will see how quantum computation tackles it

Actually we tackle only a specific case \Rightarrow order-finding The latter is handled efficiently via QPE Integer factorisation reduces to it

The only quantum component in Shor's algorithm

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Renato Neves

A sprinkle of number theory

We call the integer x a divisor of the integer y if $k \cdot x = y$ for some integer k

Examples

2 is a divisor of 10 and 5 is a divisor of 15. What are the divisors of a prime number?

Definition

For two integers x and y, gcd(x, y) is the greatest divisor common to x and y

Examples

$$gcd(8, 12) = 4$$
 and $gcd(10, 15) = 5$

Two integers x and y are called co-prime if gcd(x, y) = 1

Examples

8 and 9 are co-prime and 13 and 15 are co-prime as well. The integers 12 and 15 are not co-prime.

Given an integer N the set of integers mod N is $\{0, 1, \dots, N-1\}$

We can think of this set as a circular circuit with different positions and where the position after N-1 is 0

Definition

For two integers x and y we write $x \equiv y \pmod{N}$ if $x \mod N = y$

Examples

$$5 \equiv 0 \pmod{5}$$
 and $6 \equiv 1 \pmod{5}$

For co-prime integers a < N the order of $a \pmod{N}$ is the smallest integer r > 0 s.t. $a^r \equiv 1 \pmod{N}$

Example

If N = 5 the sequence $3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \ldots$ leads to the sequence $1, 3, 4, 2, 1, 3, 4, \ldots$

Order of $3 \pmod{5}$ is thus 4

Exercise

What is the order of $2 \pmod{11}$?

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Renato Neves

The problem of order-finding

The Problem

Co-prime integers a < N

What is the order of $a \pmod{N}$?

The Problem

Co-prime integers a < N

What is the order of $a \pmod{N}$?

Classically, problem can be difficult for large integers

Quantumly, it can be solved efficiently via QPE

Recall the QPE circuit

Need to choose suitable U and $|\psi\rangle$ to disclose the order

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Take co-prime integers a < N

Let $m = \lceil \log_2 N \rceil$ and define $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$

$$U |x\rangle = egin{cases} |xa \pmod{N}
angle & ext{if } 0 \leq x \leq N-1 \ |x
angle & ext{otherwise} \end{cases}$$

Exercise

Show that $U | a^n \pmod{N} \rangle = | a^{n+1} \pmod{N} \rangle$

Take co-prime integers a < N

Let $m = \lceil \log_2 N \rceil$ and define $U : \mathbb{C}^{2^m} \to \mathbb{C}^{2^m}$

$$U |x\rangle = egin{cases} |xa \pmod{N}
angle & ext{if } 0 \leq x \leq N-1 \ |x
angle & ext{otherwise} \end{cases}$$

Exercise

Show that $U \ket{a^n \pmod{N}} = \ket{a^{n+1} \pmod{N}}$

Next step is to identify suitable eigenvectors

Recall: if N = 5 sequence $3^0, 3^1, 3^2, 3^3, 3^4, 3^5, 3^6, \ldots$ leads to <u>1,3,4,2,1,3,4,...</u>

Order r of $3 \pmod{5}$ is 4. We then calculate,

 $U\left(\frac{1}{\sqrt{r}}(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$ = $U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1} |3^{i} \pmod{5}\rangle\right)$ = $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1} |3^{i+1} \pmod{5}\rangle$ = $\frac{1}{\sqrt{r}}\left(|3\rangle + |4\rangle + |2\rangle + |1\rangle\right)$ = $\frac{1}{\sqrt{r}}\left(|1\rangle + |3\rangle + |4\rangle + |2\rangle\right)$

The latter state is therefore an eigenvector of U

Previous example alludes to the equation

$$U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|a^{i} \pmod{N}\right\rangle\right) = \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|a^{i} \pmod{N}\right\rangle$$

Unfortunately, corresponding eigenvalue is $1 = e^{i2\pi 0\frac{1}{2^n}}$

It does not disclose any information about the period r:(

Previous example alludes to the equation

$$U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|a^{i} \pmod{N}\right\rangle\right) = \frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\left|a^{i} \pmod{N}\right\rangle$$

Unfortunately, corresponding eigenvalue is $1 = e^{i2\pi 0\frac{1}{2^n}}$

It does not disclose any information about the period r:(

Need to find eigenvectors with more informative eigenvalues

A Second Approach

Let $\omega = e^{i2\pi \cdot \frac{1}{r}} \underbrace{(\text{division of the <u>unit circle</u> in$ *r* $slices)}_{a.k.a. the r roots of unity}$

$$U\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}|a^{i} \pmod{N}\right)\right)$$

= $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}|a^{i+1} \pmod{N}\rangle$
= $\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega\omega^{-(i+1)}|a^{i+1} \pmod{N}\rangle$
= $\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-(i+1)}|a^{i+1} \pmod{N}\rangle\right)$
= $\omega\left(\frac{1}{\sqrt{r}}\sum_{i=0}^{r-1}\omega^{-i}|a^{i} \pmod{N}\rangle\right)$

Exercise

Formally justify all the steps in the calculation above

Renato Neves

Choosing suitale input parameters in QPE

Let
$$\omega = e^{i2\pi \cdot \frac{1}{r}}$$
 and $|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} |a^i \pmod{N}\rangle$
Previous slide says $U |\psi_1\rangle = \omega |\psi_1\rangle$

So if we feed QPE with U and $|\psi_1\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability ($\geq \frac{4}{\pi^2} \approx 0.4$)

Let
$$\omega = e^{i2\pi \cdot \frac{1}{r}}$$
 and $|\psi_1\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i} |a^i \pmod{N}\rangle$
Previous slide says $U |\psi_1\rangle = \omega |\psi_1\rangle$

So if we feed QPE with U and $|\psi_1\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability ($\geq \frac{4}{\pi^2} \approx 0.4$)

However $|\psi_1\rangle$ is difficult to construct. Can you see why?

We define a superposition of eigenvectors that is equal to $|1\rangle$: set $|\psi_k\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-ik} |a^i \pmod{N}\rangle$ and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |\psi_k\rangle$

Exercise

Then show $U |\psi_k\rangle = \omega^k |\psi_k\rangle$

Exercise

Finally show $|\psi\rangle=|1\rangle$ (hint: show $\langle 1|\psi\rangle=1$ or alternatively use the closed-form formula of geometric series)

$$U |\psi_k\rangle = \omega^k |\psi_k\rangle = e^{i2\pi \frac{k}{r}} |\psi_k\rangle$$
 and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} |\psi_k\rangle$. Therefore

encodes info. in local phases (in the form of rotations)

returns $\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \left(\left| \tilde{\phi}_k \right\rangle | \psi_k \rangle \right)$ where each $\left| \tilde{\phi}_k \right\rangle$ is the best *n*-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^2}$

$$U |\psi_k\rangle = \omega^k |\psi_k\rangle = e^{i2\pi \frac{k}{r}} |\psi_k\rangle$$
 and $|\psi\rangle = \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} |\psi_k\rangle$. Therefore

encodes info. in local phases (in the form of rotations)

returns $\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \left(\left| \tilde{\phi}_k \right\rangle | \psi_k \rangle \right)$ where each $\left| \tilde{\phi}_k \right\rangle$ is the best *n*-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^2}$ But how to extract *r* from $\left| \tilde{\phi}_k \right\rangle$?

Renato Neves

Let φ be the best *n*-bit approximation of some $\frac{k}{r}$

Theorem

If $\left|\frac{k}{r} - \varphi\right| \le \frac{1}{2r^2}$ then we can extract $\frac{k}{r}$ in <u>reduced form</u>, and with complexity $O(m^3)$

Proof.

Uses the continued fractions alg. (see Appendix 4, Nielsen and Chuang, *Quantum Computation and Quantum Information*)

Previous theorem tells we need to use a minimum number n of qubits to represent φ . Particularly,

recall: $m = \lceil \log_2 N \rceil$ $2^{n+1} \ge 2r^2$ $\Leftarrow 2^{n+1} \ge 2(2^m)^2$ $\Leftarrow 22^n \ge 2(2^m)^2$ $\Leftarrow 2^n \ge 2^{2m}$ $\Leftarrow n \ge 2m$

 $\{r \le N \le 2^m\}$

Thus the number of qubits to use in the approximation φ should be at least 2m

In order to obtain the order r, proceed with the following steps

- 1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_1}{r_1}$ and $\frac{k_2}{r_2}$
- 2. if $gcd(k_1, k_2) \neq 1$ repeat previous step else set r := least common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output *r* else go back to step 1

In order to obtain the order r, proceed with the following steps

- 1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_1}{r_1}$ and $\frac{k_2}{r_2}$
- 2. if $gcd(k_1, k_2) \neq 1$ repeat previous step else set r := least common multiple of r_1 and r_2
- 3. if $a^r \pmod{N} \equiv 1$ output r else go back to step 1

In step 2, probability of $gcd(k_1, k_2) = 1$ is $\geq \frac{1}{4}$. Hence whole algorithm has constant probability of success

In step 2, computation of gcd and least common multiple has complexity $O(m^2)$. Hence the whole algorithm must be efficient