An Application of QPE: Order-Finding

Renato Neves

Universidade do Minho

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Period-Finding

The Problem

A periodic function f. Find its period.

Period-Finding

The Problem

A periodic function f. Find its period.

Problem can be difficult (particularly if f has no obvious structure, such as being trigonometric)

We will see how quantum computation tackles it

Order-Finding

Actually we tackle only a specific case \Rightarrow order-finding
The latter is handled efficiently via QPE
Integer factorisation reduces to it
The only quantum component in Shor's algorithm

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

A Handful of Definitions

Definition

We call the integer x a divisor of the integer y if $k \cdot x=y$ for some integer k

Examples

2 is a divisor of 10 and 5 is a divisor of 15 . What are the divisors of a prime number?

Definition

For two integers x and $y, \operatorname{gcd}(x, y)$ is the greatest divisor common to x and y

Examples

$$
\operatorname{gcd}(8,12)=4 \text { and } \operatorname{gcd}(10,15)=5
$$

A Handful of Definitions pt. II

Definition

Two integers x and y are called co-prime if $\operatorname{gcd}(x, y)=1$

Examples

8 and 9 are co-prime and 13 and 15 are co-prime as well. The integers 12 and 15 are not co-prime.

Modular Arithmetic

Definition

Given an integer N the set of integers $\bmod N$ is $\{0,1, \ldots, N-1\}$

We can think of this set as a circular circuit with different positions and where the position after $N-1$ is 0

Definition

For two integers x and y we write $x \equiv y(\bmod N)$ if $x \bmod N=y$

Examples

$5 \equiv 0(\bmod 5)$ and $6 \equiv 1(\bmod 5)$

Order-Finding

Definition

For co-prime integers $a<N$ the order of $a(\bmod N)$ is the smallest integer $r>0$ s.t. $a^{r} \equiv 1(\bmod N)$

Example

If $N=5$ the sequence $3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}, \ldots$ leads to the sequence $1,3,4,2,1,3,4, \ldots$

Order of $3(\bmod 5)$ is thus 4

Exercise

What is the order of $2(\bmod 11)$?

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Order-Finding

The Problem
Co-prime integers $a<N$
What is the order of $a(\bmod N)$?

Order-Finding

The Problem
Co-prime integers $a<N$
What is the order of $a(\bmod N)$?

Classically, problem can be difficult for large integers
Quantumly, it can be solved efficiently via QPE

QPE Revisited

Recall the QPE circuit

Need to choose suitable U and $|\psi\rangle$ to disclose the order

Table of Contents

Introduction

A sprinkle of number theory

The problem of order-finding

Choosing suitale input parameters in QPE

Choosing the Right Unitary

Take co-prime integers $a<N$
Let $m=\left\lceil\log _{2} N\right\rceil$ and define $U: \mathbb{C}^{2^{m}} \rightarrow \mathbb{C}^{2^{m}}$

$$
U|x\rangle= \begin{cases}|x a(\bmod N)\rangle & \text { if } 0 \leq x \leq N-1 \\ |x\rangle & \text { otherwise }\end{cases}
$$

Exercise

Show that $U\left|a^{n}(\bmod N)\right\rangle=\left|a^{n+1}(\bmod N)\right\rangle$

Choosing the Right Unitary

Take co-prime integers $a<N$
Let $m=\left\lceil\log _{2} N\right\rceil$ and define $U: \mathbb{C}^{2^{m}} \rightarrow \mathbb{C}^{2^{m}}$

$$
U|x\rangle= \begin{cases}|x a(\bmod N)\rangle & \text { if } 0 \leq x \leq N-1 \\ |x\rangle & \text { otherwise }\end{cases}
$$

Exercise

Show that $U\left|a^{n}(\bmod N)\right\rangle=\left|a^{n+1}(\bmod N)\right\rangle$

Next step is to identify suitable eigenvectors

Starting with an Example

Recall: if $N=5$ sequence $3^{0}, 3^{1}, 3^{2}, 3^{3}, 3^{4}, 3^{5}, 3^{6}, \ldots$ leads to $1,3,4,2,1,3,4, \ldots$

Order r of $3(\bmod 5)$ is 4 . We then calculate,

$$
\begin{aligned}
& U\left(\frac{1}{\sqrt{r}}(|1\rangle+|3\rangle+|4\rangle+|2\rangle)\right. \\
= & U\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|3^{i}(\bmod 5)\right\rangle\right) \\
= & \frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|3^{i+1}(\bmod 5)\right\rangle \\
= & \frac{1}{\sqrt{r}}(|3\rangle+|4\rangle+|2\rangle+|1\rangle) \\
= & \frac{1}{\sqrt{r}}(|1\rangle+|3\rangle+|4\rangle+|2\rangle)
\end{aligned}
$$

The latter state is therefore an eigenvector of U

A First Approach

Previous example alludes to the equation

$$
U\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|a^{i}(\bmod N)\right\rangle\right)=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|a^{i}(\bmod N)\right\rangle
$$

Unfortunately, corresponding eigenvalue is $1=e^{i 2 \pi 0 \frac{1}{2^{n}}}$
It does not disclose any information about the period r :(

A First Approach

Previous example alludes to the equation

$$
U\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|a^{i}(\bmod N)\right\rangle\right)=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|a^{i}(\bmod N)\right\rangle
$$

Unfortunately, corresponding eigenvalue is $1=e^{i 2 \pi 0 \frac{1}{2^{n}}}$
It does not disclose any information about the period r :(
Need to find eigenvectors with more informative eigenvalues

A Second Approach

$$
\begin{aligned}
& \text { Let } \omega=e^{i 2 \pi \cdot \frac{1}{r}} \underbrace{(\text { division of the unit circle in } r \text { slices) }}_{\text {a.k.a. the r roots of unity }} \\
& \begin{array}{l}
U\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i}\left|a^{i}(\bmod N)\right\rangle\right) \\
=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i}\left|a^{i+1}(\bmod N)\right\rangle \\
=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega \omega^{-(i+1)}\left|a^{i+1}(\bmod N)\right\rangle \\
=\omega\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-(i+1)}\left|a^{i+1}(\bmod N)\right\rangle\right) \\
=\omega\left(\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i}\left|a^{i}(\bmod N)\right\rangle\right)
\end{array}
\end{aligned}
$$

Exercise

Formally justify all the steps in the calculation above

A Second Approach

Let $\omega=e^{i 2 \pi \cdot \frac{1}{r}}$ and $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i}\left|a^{i}(\bmod N)\right\rangle$
Previous slide says $U\left|\psi_{1}\right\rangle=\omega\left|\psi_{1}\right\rangle$
So if we feed QPE with U and $\left|\psi_{1}\right\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability $\left(\geq \frac{4}{\pi^{2}} \approx 0.4\right)$

A Second Approach

Let $\omega=e^{i 2 \pi \cdot \frac{1}{r}}$ and $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i}\left|a^{i}(\bmod N)\right\rangle$
Previous slide says $U\left|\psi_{1}\right\rangle=\omega\left|\psi_{1}\right\rangle$
So if we feed QPE with U and $\left|\psi_{1}\right\rangle$ we obtain an approximation of $\frac{1}{r}$ with good success probability $\left(\geq \frac{4}{\pi^{2}} \approx 0.4\right)$
However $\left|\psi_{1}\right\rangle$ is difficult to construct. Can you see why?

A Third Approach

We define a superposition of eigenvectors that is equal to $|1\rangle$:

$$
\text { set }\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1} \omega^{-i k}\left|a^{i}(\bmod N)\right\rangle \text { and }|\psi\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|\psi_{k}\right\rangle
$$

Exercise

Then show $U\left|\psi_{k}\right\rangle=\omega^{k}\left|\psi_{k}\right\rangle$

Exercise

Finally show $|\psi\rangle=|1\rangle$ (hint: show $\langle 1 \mid \psi\rangle=1$ or alternatively use the closed-form formula of geometric series)

A Third Approach

$U\left|\psi_{k}\right\rangle=\omega^{k}\left|\psi_{k}\right\rangle=e^{i 2 \pi \frac{k}{r}}\left|\psi_{k}\right\rangle$ and $|\psi\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|\psi_{k}\right\rangle$. Therefore

returns $\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left(\left|\tilde{\phi}_{k}\right\rangle\left|\psi_{k}\right\rangle\right)$ where each $\left|\tilde{\phi}_{k}\right\rangle$ is the best n-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^{2}}$

A Third Approach

$U\left|\psi_{k}\right\rangle=\omega^{k}\left|\psi_{k}\right\rangle=e^{i 2 \pi \frac{k}{r}}\left|\psi_{k}\right\rangle$ and $|\psi\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|\psi_{k}\right\rangle$. Therefore

returns $\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left(\left|\tilde{\phi}_{k}\right\rangle\left|\psi_{k}\right\rangle\right)$ where each $\left|\tilde{\phi}_{k}\right\rangle$ is the best n-bit approximation of $\frac{k}{r}$ with probability $\geq \frac{4}{\pi^{2}}$
But how to extract r from $\left|\tilde{\phi}_{k}\right\rangle$?

Extracting the Period

Let φ be the best n-bit approximation of some $\frac{k}{r}$

Theorem

If $\left|\frac{k}{r}-\varphi\right| \leq \frac{1}{2 r^{2}}$ then we can extract $\frac{k}{r}$ in reduced form, and with complexity $O\left(m^{3}\right)$

Proof.

Uses the continued fractions alg. (see Appendix 4, Nielsen and Chuang, Quantum Computation and Quantum Information)

Previous theorem tells we need to use a minimum number n of qubits to represent φ. Particularly,

Extracting the Period

$$
\begin{aligned}
& \text { recall: } m=\left\lceil\log _{2} N\right\rceil \\
& 2^{n+1} \geq 2 r^{2} \\
& \Leftarrow 2^{n+1} \geq 2\left(2^{m}\right)^{2} \\
& \Leftarrow 22^{n} \geq 2\left(2^{m}\right)^{2} \\
& \Leftarrow 2^{n} \geq 2^{2 m} \\
& \Leftarrow n \geq 2 m
\end{aligned}
$$

Thus the number of qubits to use in the approximation φ should be at least $2 m$

Finally...

In order to obtain the order r, proceed with the following steps

1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_{1}}{r_{1}}$ and $\frac{k_{2}}{r_{2}}$
2. if $\operatorname{gcd}\left(k_{1}, k_{2}\right) \neq 1$ repeat previous step else set $r:=$ least common multiple of r_{1} and r_{2}
3. if $a^{r}(\bmod N) \equiv 1$ output r else go back to step 1

Finally...

In order to obtain the order r, proceed with the following steps

1. run QPE + continued fractions alg. twice to obtain two reduced fractions $\frac{k_{1}}{r_{1}}$ and $\frac{k_{2}}{r_{2}}$
2. if $\operatorname{gcd}\left(k_{1}, k_{2}\right) \neq 1$ repeat previous step else set $r:=$ least common multiple of r_{1} and r_{2}
3. if $a^{r}(\bmod N) \equiv 1$ output r else go back to step 1

In step 2, probability of $\operatorname{gcd}\left(k_{1}, k_{2}\right)=1$ is $\geq \frac{1}{4}$. Hence whole algorithm has constant probability of success

In step 2, computation of gcd and least common multiple has complexity $O\left(m^{2}\right)$. Hence the whole algorithm must be efficient

