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Period-Finding

The Problem
A function f. Find its period.

Problem can be difficult (particularly if f has no obvious structure,
such as being trigonometric)

We will see how quantum computation tackles it
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Order-Finding

Actually we tackle only a specific case = order-finding
The latter is handled efficiently via QPE
Integer factorisation reduces to it

The only quantum component in Shor’s algorithm
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A Handful of Definitions

Definition
We call the integer x a of the integer y if k- x =y for
some integer k

Examples
2 is a divisor of 10 and 5 is a divisor of 15. What are the divisors
of a prime number?

Definition
For two integers x and vy, is the greatest divisor
common to x and y

Examples
gcd(8,12) = 4 and gcd(10,15) =5
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A Handful of Definitions pt. Il

Definition
Two integers x and y are called if ged(x,y) =1

Examples
8 and 9 are co-prime and 13 and 15 are co-prime as well. The

integers 12 and 15 are not co-prime.
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Modular Arithmetic

Definition
Given an integer N the set of is {0,1,...,N—1}
We can think of this set as a circuit with different positions

and where the position after N — 1 is 0
Definition

For two integers x and y we write if xmod N =y

Examples
5=0(mod5) and 6 = 1(mod5)

A sprinkle of number theory 3 )2



Order-Finding

Definition
For co-prime integers a < N the is the
smallest integer r > 0 s.t. a" = 1 (mod N)

Example
If N =5 the sequence 3°,31,32 33 3% 35 36 . |eads to the
sequence 1,3,4,2.1,3.4, ...

Order of 3(mod5) is thus 4

Exercise
What is the order of 2 (mod 11)?

A sprinkle of number theory o ja2
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Order-Finding

The Problem
Co-prime integers a < N

What is the order of a(mod N)?
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Order-Finding

The Problem
Co-prime integers a < N

What is the order of a(mod N)?

Classically, problem can be difficult for large integers

Quantumly, it can be solved efficiently via QPE

The problem of order-finding i1 2



QPE Reuvisited

Recall the QPE circuit

converts |0) to Fourier basis  converts encoded info. to comput. basis

encodes k in local phases (in the form of rotations)

Need to choose suitable U and |¢) to disclose the order

The problem of order-finding i ) 2
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Choosing the Right Unitary

Take co-prime integers a < N

Let m = [log, N| and define U : C?" — C?"

|xa(mod N)) ifO<x<N-1
Ulx) =

|x) otherwise

Exercise
Show that U |a" (mod N)) = |a"*! (mod N))



Choosing the Right Unitary

Take co-prime integers a < N

Let m = [log, N| and define U : C?" — C?"

|xa(mod N)) ifO<x<N-1
Ulx) =

|x) otherwise

Exercise
Show that U |a" (mod N)) = |a"*! (mod N))

Next step is to identify



Starting with an Example

Recall: if N =5 sequence 3°,3%,32, 33,34 3% 30 . leads to
1,3,4,2,1,3,4,...

Order r of 3(mod5) is 4. We then calculate,
U(Z(11) +13) + 14) +[2))

U(Z 2313 (mod5)) )

7 S8 37 (mod 5))

= Z(B+19+12+1))

= (I +13+14+12)

The latter state is therefore an eigenvector of U



A First Approach

Previous example alludes to the equation

V(& xrd|a (mod N)) ) = L 578 |af (mod N))
i2m0 5

Unfortunately, corresponding eigenvalue is 1 = e

It does not disclose any information about the period r :(



A First Approach

Previous example alludes to the equation

U(Z 2128 13 (mod N)) ) = 252723 [al (mod N))
Unfortunately, corresponding eigenvalue is 1 = e/2m0z

It does not disclose any information about the period r :(

Need to find eigenvectors with more informative eigenvalues



A Second Approach

i2m-1
=

Let w=¢e (division of the unit circle in r slices)

a.k.a. the r roots of unity
U(% S w |a’ (mod N)) )
=Ly tw T a*!t (mod N))
— L 57w (4 [+ (mod )
= (J Sigw ) [+ (mod M)
=w (% S gw ™ |a (mod N)>)

Exercise

Formally justify all the steps in the calculation above



A Second Approach

Let w = €2+ and |1h1) = \% —dw ' ]a’ (mod N))
Previous slide says U |¢1) = w [1)1)

So if we feed QPE with U and |¢);) we obtain an approximation of

L with good success probability (> 2 ~ 0.4)



A Second Approach

Let w = €2+ and |1h1) = L 5w |3l (mod N))
Previous slide says U |¢1) = w [1)1)

So if we feed QPE with U and |¢);) we obtain an approximation of
L with good success probability (> 2 ~ 0.4)

However |11) is difficult to construct. Can you see why?



A Third Approach

We define a that is equal to [1):
set 1) = 2= X2 w ™ |a' (mod N)) and [1) = 2= 3775 |v)

Exercise
Then show U |1p,) = w [aby)

Exercise
Finally show [¢)) = [1) (hint: show (1]|¢)) =1 or alternatively use
the closed-form formula of geometric series)



A Third Approach

Ule) = wk i) = e!r s |¥k) and |¢) = % Ef;& |tk). Therefore

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) " QFT, fr—g—H QFT, ™ 1+~
V) 1Y 4

encodes info. in local phases (in the form of rotations)

returns % ZL;%) (‘J)k> |1/)k>) where each ‘QNS;(> is the best n-bit
approximation of é with probability > %



A Third Approach

Ule) = wk i) = e!r s |¥k) and |¢) = % Ef;& |tk). Therefore

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) " QFT, fr—g—H QFT, ™ 1+~
V) 1Y 4

encodes info. in local phases (in the form of rotations)

returns % ZL;%) (‘J)k> |1/)k>) where each ‘QNS;(> is the best n-bit
approximation of é with probability > %

But how to extract r from ’g?)k>?



Extracting the Period

Let ¢ be the best n-bit approximation of some X

F
Theorem

If ’é — go’ < ﬁ then we can extract é in reduced form, and with
complexity O(m?)

Proof.

Uses the continued fractions alg. (see Appendix 4, Nielsen and

Chuang, Quantum Computation and Quantum Information) [

Previous theorem tells we need to use a n of
qubits to represent . Particularly,



Extracting the Period

recall: m = [loga ]

2n+1 > 2r2

< 2m1 > p(2m)2 {r<nN<2m}
= 22" > 2(2M)?

— n > 22m

~<=n>2m

Thus the number of qubits to use in the approximation ¢ should
be at least 2m



Finally. ..

In order to obtain the order r, proceed with the following steps

1. run QPE + continued fractions alg. twice to obtain two
reduced fractions lr% and %

2. if ged(ky, ko) # 1 repeat previous step else set r := least
common multiple of r; and r

3. if a" (mod N) = 1 output r else go back to step 1



Finally. ..

In order to obtain the order r, proceed with the following steps

1. run QPE + continued fractions alg. twice to obtain two

reduced fractions lr% and %

2. if ged(ky, ko) # 1 repeat previous step else set r := least
common multiple of r; and r

3. if a" (mod N) = 1 output r else go back to step 1

In step 2, probability of gcd(ki, ko) =1is > %. Hence whole
algorithm has constant probability of success

In step 2, computation of gcd and least common multiple has
complexity O(m?). Hence the whole algorithm must be efficient
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