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Quantum Phase Estimation

The Problem
Unitary operator on n qubits

Eigenvector with eigenvalue λ = ei2πϕ (0 ≤ ϕ < 1)

Find out ϕ

Eigenvalues of unitaries are always of form above

This problem occurs in diverse tasks

• Shor’s algorithm
• Determining nº of solutions in unstructured search
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A Certain Subroutine

Previous problem uses an important subroutine called

Quantum Fourier Transform (QFT)

Essentially a change-of-basis operation which encodes information
of computational basis states in local phases
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QFT: 1 Qubit

QFT1 |0⟩ = 1√
2
(

|0⟩ + 1 |1⟩
)

QFT1 |1⟩ = 1√
2
(

|0⟩ + (−1) |1⟩
)

Hence QFT1 = H. Operation H−1 allows to extract information
encoded in local phases

= H

Exercise

Let ω1 = ei2π 1
2 . Show that QFT1 |x⟩ = 1√

2

(
|0⟩ + ω1·x

1 |1⟩
)

angle of π radians
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QFT: 2 Qubits

Let ω2 = ei2π 1
4

QFT2 |00⟩ = 1√
2
(

|0⟩ + ω2·0
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω1·0
2 |1⟩

)
QFT2 |01⟩ = 1√

2
(

|0⟩ + ω2·1
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω1·1
2 |1⟩

)
QFT2 |10⟩ = 1√

2
(

|0⟩ + ω2·2
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω1·2
2 |1⟩

)
QFT2 |11⟩ = 1√

2
(

|0⟩ + ω2·3
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω1·3
2 |1⟩

)

Exercise
Use Bloch sphere to study QFT2 |x⟩. Specifically note that

• previously, info. of |x⟩ encoded by vectors pointing to the
poles; now is encoded by vectors in the xz-plane

• for every ω2-rotation on the second qubit there are two such
rotations on the first qubit
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QFT: 2 Qubits

In order to derive a circuit for QFT2, we calculate

QFT2 |x⟩ = 1√
2
(

|0⟩ + ω2·x
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω1·x
2 |1⟩

)
= 1√

2
(

|0⟩ + ω
2(2x1+x2)
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω2x1+x2
2 |1⟩

)
= 1√

2
(

|0⟩ + ω4x1+2x2
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω2x1+x2
2 |1⟩

)
= 1√

2
(

|0⟩ + ω4x1
2 ω2x2

2 |1⟩
)

⊗ 1√
2
(

|0⟩ + ω2x1
2 ωx2

2 |1⟩
)

= 1√
2
(

|0⟩ + ω2x2
2 |1⟩

)
⊗ 1√

2
(

|0⟩ + ω2x1
2 ωx2

2 |1⟩
)

= 1√
2
(

|0⟩ + (−1)x2 |1⟩
)

︸ ︷︷ ︸
H|x2⟩

⊗ 1√
2
(

|0⟩ + (−1)x1ωx2
2 |1⟩

)
︸ ︷︷ ︸
some controlled rot. on H|x1⟩
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QFT: 2 Qubits

Take R2 |0⟩ = |0⟩ and R2 |1⟩ = ω |1⟩. Intuitively, R2 rotates a
vector in the xz-plane π

2 radians

It yields a controlled-R2 operation defined by |x⟩ |0⟩ 7! |x⟩ |0⟩ and
|x⟩ |1⟩ 7! R2 |x⟩ |1⟩. Equivalently

|0⟩ |x2⟩ 7! |0⟩ |x2⟩ |1⟩ |x2⟩ 7! ωx2 |1⟩ |x2⟩

Putting all pieces together we derive the QFT circuit for 2 qubits

swaps positions of qubits

|x1⟩ H R2

|x2⟩ H
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QFT: 3 Qubits

Let ωn = ei2π· 1
2n (division of the unit circle in 2n slices)

QFT3 |x⟩ =
(

|0⟩ + ω4·x
3 |1⟩

)
⊗

(
|0⟩ + ω2·x

3 |1⟩
)

⊗
(

|0⟩ + ω1·x
3 |1⟩

)

Actually, it is now easy to extrapolate the general defn. of QFT

QFTn |x⟩ =
(

|0⟩ + ω2n−1·x
n |1⟩

)
⊗ · · · ⊗

(
|0⟩ + ω20·x

n |1⟩
)

N.B. In both equations above we drop the normalisation factor 1√
2 in

each state to make notation easier on the eyes
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QFT: 3 Qubits

In order to derive a circuit for QFT3, we observe

ω2
n = ωn−1 and thus ω2n−1

n = eiπ = −1

and recall that a binary number x1 . . . xn represents the natural
number 2n−1 · x1 + · · · + 20 · xn.

We then calculate

QFT3 |x⟩
=

(
|0⟩ + ω4·x

3 |1⟩
)

⊗
(

|0⟩ + ω2·x
3 |1⟩

)
⊗

(
|0⟩ + ω1·x

3 |1⟩
)

=
(

|0⟩ + (−1)x |1⟩
)

⊗
(

|0⟩ + ω2·x
3 |1⟩

)
⊗

(
|0⟩ + ω1·x

3 |1⟩
)

=
(

|0⟩ + (−1)x3 |1⟩
)

⊗
(

|0⟩ + ω2·x
3 |1⟩

)
⊗

(
|0⟩ + ω1·x

3 |1⟩
)

= H |x3⟩ ⊗
(

|0⟩ + ω
2·(4x1+2x2+x3)
3 |1⟩

)
⊗

(
|0⟩ + ω1·x

3 |1⟩
)

= H |x3⟩ ⊗
(

|0⟩ + ω
2·(4x1+2x2)
3 ω2·x3

3 |1⟩
)

⊗
(

|0⟩ + ω1·x
3 |1⟩

)
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QFT: 3 Qubits

. . . . . .

= H |x3⟩ ⊗
(

|0⟩ + ω
2·(2x1+x2)
2 ωx3

2 |1⟩
)

⊗
(

|0⟩ + ω4x1+2x2+x3
3 |1⟩

)
= H |x3⟩ ⊗

(
|0⟩ + ω

2·(2x1+x2)
2 ωx3

2 |1⟩
)

⊗
(

|0⟩ + ω4x1+2x2
3 ωx3

3 |1⟩
)

= H |x3⟩ ⊗
(

|0⟩ + ω
2·(2x1+x2)
2 ωx3

2 |1⟩
)

⊗
(

|0⟩ + ω
2·(2x1+x2)
3 ωx3

3 |1⟩
)

= H |x3⟩ ⊗
(

|0⟩ + ω
2·(2x1+x2)
2 ωx3

2 |1⟩
)

⊗
(

|0⟩ + ω2x1+x2
2 ωx3

3 |1⟩
)︸ ︷︷ ︸

some controlled-rotations on QFT2|x1x2⟩

Calculation easily extends to QFTn (in lieu of QFT3) which
suggests a recursive defn. for the general QFT circuit
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QFT: 3 Qubits

Take Rn |0⟩ = |0⟩ and Rn |1⟩ = ωn |1⟩. Intuitively, Rn rotates a
vector in the xz-plane ‘one 2n-th of the unit circle’

It yields a controlled-Rn operation defined by |x⟩ |0⟩ 7! |x⟩ |0⟩ and
|x⟩ |1⟩ 7! Rn |x⟩ |1⟩. Equivalently

|0⟩ |y⟩ 7! |0⟩ |y⟩ and |1⟩ |y⟩ 7! ωy
n |1⟩ |y⟩

Putting all pieces together we derive the QFT circuit for 3 qubits

swaps positions of qubits by doing +1 in base 3

|x1⟩
QFT2

R2

|x2⟩ R3

|x3⟩ H
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General QFT Circuit

swaps positions of qubits by doing +1 in base n

. . . . . . . . . . . . . . . . . . . . .

. . .

. . .

|x1⟩

QFTn−1

R2

|xn−1⟩ Rn

|xn⟩ H

Renato Neves Quantum Fourier Transform 14 / 40



Complexity of QFT

How many gates does the QFT circuit require?

nº gates QFTn = nº gates QFTn−1 + 1 + n − 1 + n − 1

Hadamard
Rotations Rn

nº of swap gatesWe then calculate,

nº gates QFTn = nº gates QFTn−1 + n + n − 1
= ∑n

i=1 i + ∑n−1
i=0 i

= (n+1)n
2 + n(n−1)

2

≈ n2
2 + n2

2

= n2

Thus complexity of QFT is polynomial
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An Equivalent Formulation of QFT

Previously we saw that

QFTn |x⟩ = 1√
2(|0⟩ + ω2n−1·x

n |1⟩) ⊗ · · · ⊗ 1√
2(|0⟩ + ω1·x

n |1⟩)

Equivalent and useful definition given by

QFTn |x⟩ = 1√
2n

∑2n−1
k=0 ωx ·k

n |k⟩

Examples with n = 1 and n = 2

QFT1 |x⟩ = 1√
2(|0⟩ + ωx

1 |1⟩)

QFT2 |x⟩ = 1√
22 (|00⟩ + ωx

2 |01⟩ + ω2·x
2 |10⟩ + ω3·x

2 |11⟩)
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Exercises

Exercise 1
Show that both definitions of QFT coincide when n = 2

Exercise 2
Can you show that both definitions coincide for arbitrary n?
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Quantum Phase Estimation

The Problem
Unitary operator on n qubits

Eigenvector with eigenvalue λ = ei2πϕ (0 ≤ ϕ < 1)

Find out ϕ Eigenvalues of unitaries are always of form above
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A Simple Example

Take a unitary U with an eigenvector |ψ⟩ whose eigenvalue is ei2πϕ

ϕ is equal to one of the values {0 · 1
2 , 1 · 1

2}. Find out ϕ

This is obtained via the circuit

n n

|0⟩ H QFT −1
1

|ψ⟩ U

Renato Neves Quantum Phase Estimation 20 / 40
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Multi-Controlled Operations

Take a unitary U on n qubits

It gives rise to a multi-controlled operation
t n n

m mU

|

= |x⟩ |y⟩ 7! |x⟩ Ux |y⟩

decimal representation of x

Intuitively it applies U to |y⟩ a number of times equal to x

Examples
|10⟩ |y⟩ 7! |10⟩ (UU |y⟩) and |00⟩ |y⟩ 7! |00⟩ |y⟩

Renato Neves Quantum Phase Estimation 21 / 40
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Multi-Controlled Operations

Recall that a binary number x1 . . . xn corresponds to the natural
number 2n−1x1 + · · · + 20xn

We use this to build the previous multi-controlled operation in
terms of simpler operations

. . . . . .

. . .m m
U2n−1 U20

Note that the multi-controlled operation uses n ‘simply’-controlled
rotations U2i
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Another Example

Take a unitary U with an eigenvector |ψ⟩ whose eigenvalue is ei2π·ϕ

ϕ is equal to one of the following values
{

0 · 1
4 , 1 · 1

4 , 2 · 1
4 , 3 · 1

4

}

In order to discover ϕ we use the circuit

2

n n

|0⟩ H⊗2 QFT −1
2

|ψ⟩ U
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Another Example

2

n n

|0⟩ H⊗2 QFT −1
2

|ψ⟩ U

|0⟩ |0⟩
H⊗2
7! 1√

22 (|00⟩ + |01⟩ + |10⟩ + |11⟩)
ctrl. U
7! 1√

22 (|00⟩ + ei2πϕ |01⟩ + ei2πϕ·2 |10⟩ + ei2πϕ·3 |11⟩)

= 1√
22 (|00⟩ + ei2πx · 1

4 |01⟩ + ei2πx · 1
4 ·2 |10⟩ + ei2πx · 1

4 ·3 |11⟩)

= 1√
22 (|00⟩ + ωx

2 |01⟩ + ωx ·2
2 |10⟩ + ωx ·3

2 |11⟩)
QFT −1

27! |x⟩
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Yet Another Example

Take a unitary U with eigenvector |ψ⟩ whose eigenvalue is ei2πϕ

ϕ is equal to one of the following values
{

0 · 1
2n , . . . , 2n − 1 · 1

2n

}

In order to discover ϕ we use the following circuit

n n

m m

|0⟩ H⊗n QFT −1
n

|ψ⟩ U

Exercise
Prove that the circuit returns x with ϕ = x · 1

2n
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Yet Another Example

Exercise
Show that QFTn |0⟩ = H⊗n |0⟩. Note that this allows to rewrite
the previous circuit in the one below

converts |0⟩ to Fourier basis

encodes x in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U
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Complexity of Quantum Phase Estimation

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U

How many gates does the circuit above use?

n ‘Hadamards’ + n ‘simply’-controlled gates + n2 gates for QFT −1
n
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Precision is Limited

We assumed 0 ≤ ϕ < 1 takes a value from
{

0 · 1
2n , . . . , 2n − 1 · 1

2n

}
Assumption arose from having only n qubits to estimate

What to do if ϕ takes none of these values?

Return the n-bit number k with k · 1
2n the value above closest to ϕ

Is the QPE circuit up to this task?
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Setting the Stage

Let ωn = ei2π· 1
2n (division of the unit circle in 2n slices)︸ ︷︷ ︸

a.k.a. the n roots of unity

To answer the previous question, we will use the following explicit
defn. of QFT −1

QFT −1
n |x⟩ = 1√

2n

2n−1∑
k=0

ω−x ·k
n |k⟩

Exercise
Prove that QFT −1

n is indeed the inverse of QFTn
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Setting the Stage pt. II

Let k · 1
2n be the value in

{
0 · 1

2n , . . . , 2n − 1 · 1
2n

}
closest to ϕ

∃ϵ s.t. 0 ≤ |ϵ| ≤ 1
2n and k · 1

2n + ϵ = ϕ

The difference ϵ decreases when the number of qubits increases

Recall the QPE circuit

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U
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Computing again the Output

|0⟩
H⊗n
7! 1√

2n (|0⟩ + |1⟩ + · · · + |2n − 1⟩)
ctrl. U
7! 1√

2n

(
|0⟩ + ei2πϕ·1 |1⟩ + · · · + ei2πϕ·2n−1 |2n − 1⟩

)
= 1√

2n

(
|0⟩ + ei2π(k· 1

2n +ϵ)·1 |1⟩ + · · · + ei2π(k· 1
2n +ϵ)·2n−1 |2n − 1⟩

)
= 1√

2n

∑2n−1
j=0 ei2π(k· 1

2n +ϵ)·j |j⟩

= 1√
2n

∑2n−1
j=0 ei2πk· 1

2n ·jei2πϵ·j |j⟩
QFT −1
7! 1√

2n

∑2n−1
j=0 ei2πk· 1

2n ·jei2πϵ·j
(

1√
2n

∑2n−1
l=0 e−i2πj· 1

2n ·l |l⟩
)

= 1
2n

∑2n−1
j=0 ei2πk· 1

2n ·jei2πϵ·j
( ∑2n−1

l=0 e−i2πj· 1
2n ·l |l⟩

)
= 1

2n
∑2n−1

j=0
∑2n−1

l=0 ei2πϵ·jei2πj· 1
2n ·(k−l) |l⟩
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An Analysis of the Final State

The amplitude of |k⟩ is 1
2n

∑2n−1
j=0 ei2πϵ·j

It is a finite geometric series and therefore

1
2n

∑2n−1
j=0 ei2πϵj =

1 if ϵ = 0
1
2n

1−ei2πϵ2n

1−ei2πϵ if ϵ ̸= 0

We proceed with the assumption ϵ ̸= 0
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A Detour Through Geometry

|1 − eiθ| for some angle θ is the Euclidean distance between 1 and
eiθ (length of the straight line segment between both points)

Consider also arc length θ between 1 and eiθ (distance between the
two points by running along the unit circle)

Theorem
Let dE and da be respectively the Euclidean distance and arc
length between 1 and eiθ. Then (a) dE ≤ da and (b) if
0 ≤ θ ≤ π we have da

dE ≤ π
2
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Finally!

Recall
∣∣∣ 1

2n
1−ei2πϵ2n

1−ei2πϵ

∣∣∣2 is the probability of measuring |k⟩

∣∣∣∣∣ 1
2n

1 − ei2πϵ2n

1 − ei2πϵ

∣∣∣∣∣
2

=
( 1

2n

)2
∣∣∣1 − ei2πϵ2n

∣∣∣2
|1 − ei2πϵ|2

≥
( 1

2n

)2
∣∣∣1 − ei2πϵ2n

∣∣∣2
(2πϵ)2 {Prev. Thm. (a)}

≥
( 1

2n

)2
(

2
π · 2πϵ2n

)2

(2πϵ)2 {Prev. Thm. (b)}

=
( 1

2n

)2 (4ϵ2n)2

(2πϵ)2

=
( 1

2n

)2 (2 · 2n)2

π2 = 22

π2 = 4
π2
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From an Eigenvector to a Superposition of Eigenvectors

Recall: QPE requires an eigenvector as input

Sometimes highly difficult to build such a vector

Paradoxically (but not really :-)) often easier to feed instead a
superposition of eigenvectors

How does QPE behave in this setting?

Recall the Spectral Theorem
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QPE + Superposition of eigenvectors

Take a unitary U with eigenvectors |ψ1⟩ , . . . , |ψN⟩ and associated
eigenstates ei2πϕ1 , . . . , ei2πϕN

Define |ψ⟩ = 1√
N (|ψ1⟩ + · · · + |ψN⟩) and consider the circuit

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U
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QPE + Superposition of eigenvectors

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U

Exercise 1

Show that if ∀i ≤ N.ϕi ∈
{

0 · 1
2n , . . . , 2n − 1 · 1

2n

}
then the

circuit’s output is

1√
N

(
|k1⟩ |ψ1⟩ + · · · + |kN⟩ |ψN⟩

) (
ϕi = ki · 1

2n

)

Renato Neves When the eigenvector is difficult to build 39 / 40



QPE + Superposition of eigenvectors

converts |0⟩ to Fourier basis

encodes k in local phases (in the form of rotations)

converts encoded info. to comput. basis

n n

m m

|0⟩ QFTn QFT −1
n

|ψ⟩ U

Exercise 2
Show that in general the circuit’s output is

1√
N

( ∣∣∣ϕ̃1
〉

|ψ1⟩ + · · · +
∣∣∣ϕ̃N

〉
|ψN⟩

)
where each ϕ̃i is the best n-bit approximation of ϕi with
probability ≥ 4

π2
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