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Quantum Phase Estimation

The Problem

Unitary operator on n qubits
Eigenvector with eigenvalue \ = (0<9p<1)
Find out ¢
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Eigenvalues of unitaries are always of form above
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Quantum Phase Estimation

The Problem

Unitary operator on n qubits
Eigenvector with eigenvalue \ = (0<9p<1)
Find out ¢

Eigenvalues of unitaries are always of form above
This problem occurs in diverse tasks

= Shor’s algorithm

= Determining n® of solutions in unstructured search

Introduction 5



A Certain Subroutine

Previous problem uses an important subroutine called

Quantum Fourier Transform (QFT)

Essentially a change-of-basis operation which encodes information
of computational basis states in local phases

Introduction A
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QFT: 1 Qubit

QFT1|0) = J5(10) + 111)) QFTy 1) = 5(10) + (-1)[1))



QFT: 1 Qubit
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Hence QFT; = H. Operation H~! allows to extract information
encoded in local phases i,
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QFT: 1 Qubit

QFTLI0) = (100 +111))  QFTa[1) = 5(10) +(~1)[1))

Hence QFT; = H. Operation H! allows to extract information
encoded in local phases i,

=H

Exercise

Let wy = €272, Show that QFT; |x) = 2 (‘0> T ‘1>)

/

angle of 7 radians

S



QFT: 2 Qubits

Let wy = 2
QFT2100) = 25 (10) + w3 (1)) ® J5(10) + w3 (1))
QFT2(01) = 5 (|0) + w3 (1)) ® 5 (10) + w3 [1))
QFT2[10) = J5(10) +w3?[1)) ® J5(10) +wy?[1))
QFT2[11) = J5(10) + w3 (1)) ® J5(10) + w3y (1))



QFT: 2 Qubits

Let wy = 277
QFT2100) = Z=(10) + w3 (1)) ® 5 (10) + w3 (1))
QFT2[01) = 5(10) + w3 [1)) ® J5(10) + w3 1))
QFT2[10) = Z5(0) +w3? 1)) ® =5 (10) +w3?[1))
QFT [11) = 2(0) + w3? 1)) ® =5 (10) + w33 1))
Exercise

Use Bloch sphere to study QFT> |x). Specifically note that

= previously, info. of |x) encoded by vectors pointing to the
poles; now is encoded by vectors in the

= for every on the second qubit there are such

rotations on the first qubit



QFT: 2 Qubits

In order to derive a circuit for QFT», we calculate

QFT2 |x) = J5(10) +w3™ 1)) ® J5([0) +wh* 1))
= 7(10) +w; ™ V(1) © J5(10) + w5 2 1))
= 75(10) + w3 2 1)) ® J5(10) + w3 7 1))
= 75(10) +w3"w 1)) © J5(10) +wp wy’ 1))
= 75(10) + w37 1) ® J5(10) + w3 w3’ 1))
= 510+ (-1)2 1) ® J5(10) + (~1) w3’ 1))

H|x2) some controlled rot. on H|x1)



QFT: 2 Qubits

Take R»|0) = |0) and R |1) = w|1). Intuitively, R rotates a
vector in the xz-plane 5 radians



QFT: 2 Qubits

Take R»|0) = |0) and R |1) = w|1). Intuitively, R rotates a
vector in the xz-plane 5 radians

It yields a controlled-R, operation defined by |x) |0) — |x) |0) and
1x) |1) — Ra|x) |1). Equivalently

10) [x2) = 10) |x2) 1) ) = w™ 1) [x2)



QFT: 2 Qubits

Take R»|0) = |0) and R |1) = w|1). Intuitively, R rotates a
vector in the xz-plane 5 radians

It yields a controlled-R, operation defined by |x) |0) — |x) |0) and
1x) |1) — Ra|x) |1). Equivalently

10) [x2) = 10) |x2) 1) ) = w™ 1) [x2)

Putting all pieces together we derive the QFT circuit for 2 qubits

ST T
1
]

|x1) R i ——

) (]

=

swaps positions of qubits



QFT: 3 Qubits

i2m- &

Let w, = €'“™27 (division of the unit circle in 2" slices)

QFTs|x) = (10) +w5™[1)) ® (|0) +w3™[1)) ® (]0) +wi™[1))



QFT: 3 Qubits

i2m- &

Let w, = €'“™27 (division of the unit circle in 2" slices)

QFTs|x) = (10) +w5™[1)) ® (|0) +w3™[1)) ® (]0) +wi™[1))

Actually, it is now easy to extrapolate the general defn. of QFT

QFT,lx) = (10) + w2 1)) ® - @ (10) +wh * 1))

N.B. In both equations above we drop the normalisation factor % in

each state to make notation easier on the eyes



QFT: 3 Qubits

In order to derive a circuit for QF T3, we observe
n—1 g
w,z, = w,_1 and thus w2  =¢&™ = -1

n

and recall that a binary number x; ... x, represents the natural
number 2771 . x; + .- 420 x,,.



QFT: 3 Qubits

In order to derive a circuit for QF T3, we observe

n—1 g
w,z, = wp_1 and thus w% = g% ==l

and recall that a binary number x; ... x, represents the natural
number 2771 . x; + .-+ 4+ 20 . x,. We then calculate

QFT3|x)

= (10) + wi™ 1)) ® (]0) + w3 [1)) @ (]0) + wh™[1))
= (10) + (1) [1)) ® (|0) + 3™ [1)) ® ([0} +wh* 1))
= (10) + (=1) 1)) ® (0} + w3 [1)) ® (|0) +wh* 1))
= Hlxs) @ (]0) + w5y "2 1)) @ (10) +wh™ (1))
= Hlxs) ® (10) + w3 0l 1)) ® (10) +wd™ (1))



QFT: 3 Qubits

10) + szzx X3 |1>>
>+w§‘“*2x 3‘3\1>)
0) + w3 @ 1))
wy P 1)) @ (10) + w3 ewy® (1))

some controlled-rotations on QF T2|x1x2)




QFT: 3 Qubits

|0> 4‘<1sz G |1>>
>+w§‘“*2x 3‘3\1>)
0) + w3 @ 1))
wy P 1)) @ (10) + w3 ewy® (1))

some controlled-rotations on QF T2|x1x2)

Calculation easily extends to QFT, (in lieu of QFT3) which
suggests a recursive defn. for the general QFT circuit



QFT: 3 Qubits

Take R,|0) = |0) and R, |1) = wp|1). Intuitively, R, rotates a
vector in the xz-plane ‘one 2"-th of the unit circle’

It yields a controlled-R, operation defined by |x) |0) — |x) |0) and
1x) |1) — Rp|x) |1). Equivalently

10) [y) =10} ly) and [1) |y} = wy [1) ly)



QFT: 3 Qubits

Take R,|0) = |0) and R, |1) = wp|1). Intuitively, R, rotates a
vector in the xz-plane ‘one 2"-th of the unit circle’

It yields a controlled-R, operation defined by |x) |0) — |x) |0) and
1x) |1) — Rp|x) |1). Equivalently

10) [y) =10} ly) and [1) |y} = wy [1) ly)

Putting all pieces together we derive the QFT circuit for 3 qubits

0 =)
QFT>

be) — 4% .

x3) E :

swaps positions of qubits by doing +1 in base 3

Renato Neves Quantum Fourier Transform 13 / 40



General QFT Circuit

x) — [Ref—— s

- — QFT, 4 - :

‘Xn71> ] Rn | : :
) (1] s

Renato Neves

swaps positions of qubits by doing +1 in base n

Quantum Fourier Transform

14 / 40



Complexity of QFT

How many gates does the QFT circuit require?



Complexity of QFT

How many gates does the QFT circuit require?

n® gates QFT, =n®gates QFT,.1 + 1 + n—1 + n—1

{

Rotations R,

Hadamard n® of swap gates



Complexity of QFT

How many gates does the QFT circuit require?

n® gates QFT, =n®gates QFT,.1 + 1 + n—1 + n—1

We then calculate, Hadamard  p otations Ry

n® of swap gates

n® gates QFT, = n® gates QFT,_1 +n+n—1
=Y i+

_ (n+1)n + n(n2—1)

- 2

2 2
~ - =
~ 2 + 2
:n2

Thus complexity of QFT is polynomial



An Equivalent Formulation of QFT

Previously we saw that

QFT[x) = 5(10) + w2 1)) @ - ® L(10) +wh*|1))



An Equivalent Formulation of QFT

Previously we saw that
n—1.y X
QFT, |x) = 5(10) +wi™ *[1)) ® - ® J5(10) +wp*[1))

Equivalent and useful definition given by

QFT, [x) = - X2 wik k)



An Equivalent Formulation of QFT

Previously we saw that
nfl.X X
QFT, |x) = 5(10) +wi™ *[1)) ® - ® J5(10) +wp*[1))

Equivalent and useful definition given by

QFT, [x) = - X2 wik k)

Examples with n =1 and n =2

QFTy |x) = J5(10) +wf [1))
QFT2|x) = 75(100) + w3 [01) + w3™ [10) + w3 ™ [11))



Exercises

Exercise 1
Show that both definitions of QFT coincide when n = 2

Exercise 2

Can you show that both definitions coincide for arbitrary n?
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Quantum Phase Estimation

The Problem

Unitary operator on n qubits
Eigenvector with eigenvalue \ = 0<o<1)
Find out ¢

Eigenvalues of unitaries are always of form above



A Simple Example

Take a unitary U with an eigenvector |1)) whose eigenvalue is /7

¢ is equal to one of the values {0- 1,1 1}. Find out ¢



A Simple Example

Take a unitary U with an eigenvector |1)) whose eigenvalue is /7

¢ is equal to one of the values {0- 1,1 1}. Find out ¢

This is obtained via the circuit

QFT* —




Multi-Controlled Operations

Take a unitary U on n qubits

It gives rise to a multi-controlled operation

ﬂ ey ]]—\x>ry>~>rx>uw>
7 &l'

|

decimal representation of x

Intuitively it applies U to |y) a number of times equal to x



Multi-Controlled Operations

Take a unitary U on n qubits

It gives rise to a multi-controlled operation

ﬂ'm €L ]]\xwmrxw )
— U

|

decimal representation of x

Intuitively it applies U to |y) a number of times equal to x

Examples
10) ly) — [10) (UU |y)) and [00) |y} — |00} |y)



Multi-Controlled Operations

Recall that a binary number xj ... x, corresponds to the natural

number 2" 1x; 4 -+« + 20x,

We use this to build the previous multi-controlled operation in

terms of simpler operations




Multi-Controlled Operations

Recall that a binary number xj ... x, corresponds to the natural

number 2" 1x; 4 -+« + 20x,

We use this to build the previous multi-controlled operation in

terms of simpler operations

m

— U2”*1 0 0 o—— U20 ——

Note that the multi-controlled operation uses n ‘simply’-controlled

rotations U2



Another Example

Take a unitary U with an eigenvector [1)) whose eigenvalue is /2™¢

4

¢ is equal to one of the following values {0 . %, 1. %,2 . %,3 . 1}



Another Example

Take a unitary U with an eigenvector [1)) whose eigenvalue is /2™¢

4

¢ is equal to one of the following values {0 . %, 1. %,2 . %,3 . 1}

In order to discover ¢ we use the circuit




Another Example

7 ’j_‘ QFT2_1—
) —# LU —

\F(‘OO> + ]Ol) + [10) + \11))

Y 1(100) + €2 |01) + €272 [10) + €273 [11))
(|00) + ei2mx 3 01) + @i2mx 32 10) + ei2mx33 11))
~(]00) + w3 |01) + w;2 |10) + w33 [11))



Yet Another Example

Take a unitary U with eigenvector [1/) whose eigenvalue is e/2™?

¢ is equal to one of the following values {0 . %, o, 2m =1 %}



Yet Another Example

Take a unitary U with eigenvector [1/) whose eigenvalue is e/2™?
¢ is equal to one of the following values {O O g0 non . — ko ?}

In order to discover ¢ we use the following circuit

Exercise

1

Prove that the circuit returns x with ¢ = x - 5



Yet Another Example

Exercise

Show that QFT,|0) = H®"|0). Note that this allows to rewrite
the previous circuit in the one below

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) 4 QFT, f—g—+ QFT, [+~
) 7 Ul A

encodes x in local phases (in the form of rotations)



Complexity of Quantum Phase Estimation

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) #—] QFT, fr—g—{ QFT,
) LUl A

encodes k in local phases (in the form of rotations)

How many gates does the circuit above use?



Complexity of Quantum Phase Estimation

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) #—] QFT, fr—g—{ QFT,
) LUl A

encodes k in local phases (in the form of rotations)

How many gates does the circuit above use?

n ‘Hadamards’ + n ‘simply’-controlled gates + n® gates for QFT,*
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Precision is Limited

We assumed 0 < ¢ < 1 takes a value from {0 . %, o2 —=1. i}
Assumption arose from having only n qubits to estimate

What to do if ¢ takes none of these values?

Performance o



Precision is Limited

We assumed 0 < ¢ < 1 takes a value from {0 . %, o2 —=1. i}
Assumption arose from having only n qubits to estimate
What to do if ¢ takes none of these values?

Return the n-bit number k with k - 2—1n the value above closest to ¢

Performance o



Precision is Limited

We assumed 0 < ¢ < 1 takes a value from {0- %,...72” et }
Assumption arose from having only n qubits to estimate
What to do if ¢ takes none of these values?

Return the n-bit number k with k - 2—1n the value above closest to ¢

Is the QPE circuit up to this task?

Performance o



Setting the Stage

[ 1 - . . . . . .
Let w, = e?™27 (division of the unit circle in 2" slices)

a.k.a. the n roots of unity

To answer the previous question, we will use the following explicit
defn. of QFT !

21

_ 1 ke
QFT, ™t |x) = 7o > wyk k)
k=0

Performance o



Setting the Stage

By 1
Let w, = e?™ 27 (division of the in 2" slices)

a.k.a. the n roots of unity

To answer the previous question, we will use the following explicit
defn. of QFT !

21

_ 1 ke
QFT, ™t |x) = e > wyk k)
k=0

Exercise

Prove that QFT,,_1 is indeed the inverse of QFT,

Performance 20,1



Setting the Stage pt. Il

Let k-% be the value in {0-2—1,,,...,2”71-2%} closest to ¢
Jes.t. 0< |e] < 5- and k~2in+e:d>

The difference ¢ decreases when the number of qubits increases

Performance o



Setting the Stage pt. Il

Let k - 55 be the value in {O . 2—1,,, L2 —=1- %} closest to ¢
Je s.t. 0<| |< L and k-3 +e=¢
The difference ¢ decreases when the number of qubits increases

Recall the QPE circuit

converts |0) to Fourier basis  converts encoded info. to comput. basis

encodes k in local phases (in the form of rotations)

Performance o



Computing again the Output

0)
H®n
g

7 (10) + 1) -+ 27— 1))

trl. U o i2mh-on—1
ctrl. \/127(‘0>+e:27r 1‘1>+.__+e/27r2 |2n_1>)

= 1n ( ‘0> + ei27r(k~%+:)-1 ‘1> 4t eizﬂ(k.%,l)_zn—1 ‘2n B 1>>

1 2"—1 _i2w(k =5
= L 35t ekt )

_ 12n 2"016127rl<«ﬁ-jei27re‘j|j>
QFT !
—

2"—1 2wk 2 j Li2me: 21 —i2 Jortof]
\/272 ei2m ;,,jelﬂ'tj(ﬁz i21j 55 |/>)
— 1 22" 1 127T/<~2T-_/el'27Tr~j( /2”01 7127rj~7-l ‘/>)

— 1 22" 1 22” 1 I27r(_/el2ﬂ’j s (k—=1) ‘/>

Performance o



An Analysis of the Final State

The amplitude of |k) is 217 Zflal ei2me

It is a finite geometric series and therefore

ife=20
if e A0

1 2"—1 _i27mej _
2n jZO € _ 1 1_ei27'r62"

2n 1—ef?me

Performance .



An Analysis of the Final State

The amplitude of |k) is 217 Zflal ei2me

It is a finite geometric series and therefore

ife=20
if e A0

1 \~2"—1 i2me _

2n jZO 1 1_ei27'r62"

2n 1—ef?me

We proceed with the assumption € # 0

Performance .



A Detour Through Geometry

|1 — €| for some angle @ is the Euclidean distance between 1 and
e’? (length of the straight line segment between both points)

Consider also arc length @ between 1 and e’ (distance between the

two points by running along the unit circle)

Performance 2



A Detour Through Geometry

|1 — €| for some angle 6 is the between 1 and
e’? (length of the between both points)
Consider also 6 between 1 and e (distance between the
two points by running along the )

Theorem

Let df and d? be respectively the Euclidean distance and arc
length between 1 and e®. Then (a) df < d? and (b) if
0<6<mwehave £ <3

Performance 2 1



Finally!

2
is the probability of measuring |k)

1 17ei27r€2n

Recall |35 =
11 e2me 2 1721 - oi2me2" 2
21 1—ei2me | (2”) 11— ei27re|2
1\2]1- oi2me2" 2
> (2> e (Prav. T, (@)}
1\2 (% . 271'62”)2
> <2> N T8y i, ()]
B (1)2 (4€2")?
27 ) (2me)?
_ (1>2 (229" _ 22 _ 4
2n 2 w2 2

Performance 5 )1
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From an Eigenvector to a Superposition of Eigenvectors

Recall: QPE requires an eigenvector as input
Sometimes highly difficult to build such a vector

Paradoxically (but not really :-)) often easier to feed instead a

superposition of eigenvectors

When the eigenvector is difficult to build 37 / 40



From an Eigenvector to a Superposition of Eigenvectors

Recall: QPE requires an eigenvector as input
Sometimes highly difficult to build such a vector

Paradoxically (but not really :-)) often easier to feed instead a
superposition of eigenvectors ¢

Recall the Spectral Theorem

How does QPE behave in this setting?

When the eigenvector is difficult to build 37 / 40



QPE + Superposition of eigenvectors

Take a unitary U with eigenvectors [¢1),...,|¢n) and associated
eigenstates ei2mér . el2mén

Define [¢)) = \%N(hm) + -+ |¢n)) and consider the circuit

converts |0) to Fourier basis  converts encoded info. to comput. basis

0) " QFT, fr—e—H QFT, 1+~
) A= JUR #

encodes k in local phases (in the form of rotations)

When the eigenvector is difficult to build 38 / 40



QPE + Superposition of eigenvectors

________

)

L T
o

C
S
.
)

R

)

\3 __\‘1[\

encodes k in local phases (in the form of rotations)

Exercise 1
Show that if Vi < N.¢; € {0 oy 2T =1l ;} then the
circuit's output is

Rl

m(]k1>!¢1>+---+\/w> |1/1N>) <¢i_ki'21,,>

When the eigenvector is difficult to build 39 / 40



QPE + Superposition of eigenvectors

converts |0) to Fourier basis  converts encoded info. to comput. basis

10) " QFT, f-—g—+ QFT,* 11"

encodes k in local phases (in the form of rotations)

Exercise 2

Show that in general the circuit's output is

\%( ’¢§1> 1) + -+ ‘¢~N> WJN>)

where each ¢; is the best n-bit approximation of ¢; with
probability > %

When the eigenvector is difficult to build 40 / 40
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