Entanglement and Teleportation

Renato Neves

HASLab HIGH-ASSURANCE

Table of Contents

The Problem

Recap

A First Approach to Quantum Teleportation

Quantum Teleportation

Afterthoughts

Entanglement Enters the Stage

The Problem

Two secure labs and in one of these a qubit
Terrain between the two labs full of entities that wish to access the qubit's state

How to transfer this quantum state from one lab to the other?

Entanglement Enters the Stage

The Problem

Two secure labs and in one of these a qubit
Terrain between the two labs full of entities that wish to access the qubit's state

How to transfer this quantum state from one lab to the other?

Classically, the complete data would need to be moved from one point to the other

Entanglement Enters the Stage

The Problem

Two secure labs and in one of these a qubit
Terrain between the two labs full of entities that wish to access the qubit's state

How to transfer this quantum state from one lab to the other?

Classically, the complete data would need to be moved from one point to the other

Quantumly, we can do better thanks to entanglement

Table of Contents

The Problem
Recap
A First Approach to Quantum Teleportation
Quantum Teleportation
Afterthoughts

Mathematical Notion of Entanglement

Definition

A vector $u \in V \otimes W$ is entangled if it cannot be written as a tensor $v \otimes w$ such that $v \in V$ and $w \in W$

Mathematical Notion of Entanglement

Definition

A vector $u \in V \otimes W$ is entangled if it cannot be written as a tensor $v \otimes w$ such that $v \in V$ and $w \in W$

Example

All four states below are entangled

$$
\begin{array}{ll}
\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) \\
\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) & \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)
\end{array}
$$

They form a basis of \mathbb{C}^{4}, which is often called the Bell basis

An Important Ingredient for Building Bell States and Beyond

Every quantum operation $T^{n} U 1^{n}$ gives rise to a 'controlled' quantum operation

An Important Ingredient for Building Bell States and Beyond

Every quantum operation $\boldsymbol{r}^{n} U,^{n}$ gives rise to a 'controlled' quantum operation
N.B. The circuit
 is often denoted as

Building Bell States

Every vector in the computational basis of \mathbb{C}^{4} when fed to the circuit above yields a Bell state

Postulates of Measurement

Maps M_{0} and M_{1} of type $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ for measuring a qubit

$$
M_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad M_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

A map $M_{k}, k \in\{0,1\}$ possibly tensored with identities id : $\mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ called a measurement

Postulates

For a state $v \in \mathbb{C}^{2^{n}}$ and measurement $M: \mathbb{C}^{2^{n}} \rightarrow \mathbb{C}^{2^{n}}$

- probability of outcome represented by M is $\langle M v, M v\rangle$
- state after the observed outcome is $\frac{1}{\|M v\|} M v$

Table of Contents

The Problem

Recap

A First Approach to Quantum Teleportation

Quantum Teleportation

Afterthoughts

Quantum Teleportation Intra-Gate pt. I

We transfer the top wire qubit's state to the bottom wire

Quantum Teleportation Intra-Gate pt. II

We transfer the top wire qubit's state to the bottom wire

$(H \otimes I) c X(\alpha|0\rangle+\beta|1\rangle)|1\rangle$
$=.$.
$=\frac{1}{\sqrt{2}}(|0\rangle(\alpha|1\rangle+\beta|0\rangle)+|1\rangle(\alpha|1\rangle-\beta|0\rangle))$

Quantum Teleportation Intra-Gate pt. III

Are we done?

Quantum Teleportation Intra-Gate pt. III

Are we done?
We can transfer a qubit's state, but both qubits need to be connected by a gate

Quantum Teleportation Intra-Gate pt. III

Are we done?
We can transfer a qubit's state, but both qubits need to be connected by a gate

Fortunately we can do better.

Quantum Teleportation Intra-Gate pt. III

Are we done?
We can transfer a qubit's state, but both qubits need to be connected by a gate

Fortunately we can do better. We use entanglement to establish a secure 'communication channel' and proceed in the following manner ...

Table of Contents

The Problem
 Recap
 A First Approach to Quantum Teleportation

Quantum Teleportation

Afterthoughts

Quantum Teleportation pt. I

Bottom qubits become entangled and thus connected, even if they are far away from each other later on

Quantum Teleportation pt. II

$$
\begin{aligned}
& ((H \otimes I) \otimes I)(c X \otimes I)\left((\alpha|0\rangle+\beta|1\rangle) \otimes \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\right) \\
& =\frac{1}{\sqrt{2}}((H \otimes I) \otimes I)(c X \otimes I)(\alpha|000\rangle+\alpha|011\rangle+\beta|100\rangle+\beta|111\rangle) \\
& =\frac{1}{\sqrt{2}}((H \otimes I) \otimes I)(\alpha|000\rangle+\alpha|011\rangle+\beta|110\rangle+\beta|101\rangle) \\
& =\frac{1}{\sqrt{2}}((H \otimes I) \otimes I)(|0\rangle(\alpha|00\rangle+\alpha|11\rangle)+|1\rangle(\beta|10\rangle+\beta|01\rangle)) \\
& =\frac{1}{2}((|0\rangle+|1\rangle)(\alpha|00\rangle+\alpha|11\rangle)+(|0\rangle-|1\rangle)(\beta|10\rangle+\beta|01\rangle)) \\
& =\frac{1}{2}(|00\rangle(\alpha|0\rangle+\beta|1\rangle)+|01\rangle(\alpha|1\rangle+\beta|0\rangle)+|10\rangle(\alpha|0\rangle-\beta|1\rangle) \ldots \\
& \cdots+|11\rangle(\alpha|1\rangle-\beta|0\rangle))
\end{aligned}
$$

Quantum Teleportation pt. III

Table of Contents

The Problem
Recap
A First Approach to Quantum Teleportation
Quantum Teleportation
Afterthoughts

Did We Just Break Physics?

No.

Did We Just Break Physics?

No.

No-cloning

Did not end up with two copies of $|\psi\rangle$, because the state of the top qubit was destroyed by the measurement

Did We Just Break Physics?

No.

No-cloning

Did not end up with two copies of $|\psi\rangle$, because the state of the top qubit was destroyed by the measurement

FTL communication

Did not communicate faster than light, because teleportation required us to send two classical bits

What's Next?

First glimpse of applications of quantum phenomena to algorithmics and communication. Namely

- superposition \& interference
- entanglement

Next we will overview more sophisticated applications of these phenomena

