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Our First Encounter with ‘Quantum Advantage’

The Problem
Receive a ‘single-bit’ function f : {0, 1} ! {0, 1}

Either f (0) = f (1) or f (0) ̸= f (1)

Tell us whether the first or second case hold

Classically, to determine which case holds requires running f twice

Quantumly, it suffices to run f once . . .

due to two quantum effects superposition and interference
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The Need for a Quantum Computational Language

Quantum solution to the previous problem given as an algorithm

In order to describe it, it is convenient to use a computational
language . . .

. . . just like in the classical case
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Postulates of Pure Quantum Systems

States
State of n-qubits encoded as a unit vector

v ∈ C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

∼= C2n

State operations
n-qubit operation encoded as an isometry

C2n
−! C2n

i.e. a linear map that preserves norms

Recall: we can sequentially compose and tensor isometries
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Genesis

We start with a set of quantum operations{
n1 n1U1 , . . . , nk nkUk

}

Each operation Ui manipulates the state of ni -qubits received from
its left-hand side . . .

. . . and returns the result on its right-hand side
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Examples of Quantum Operations

s

X

{
= X : C2 ! C2 (not operation)

s

H

{
= H : C2 ! C2 (Hadamard operation)

JxK reads as "the mathematical meaning of x"
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New Operations from Old Ones

Sequential Composition

n nU1
n nU2 =⇒ n nU1 U2

Parallel Composition

n1 n1U1
n2 n2U2 =⇒

n1 n1

n2 n2

U1

U2
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Mathematical Meaning of Sequential Composition

t
n nU1

|

= f : C2n
! C2n and

t
n nU2

|

= g : C2n
! C2n entails . . .

u

v n nU1 U2

}

~ = g · f : C2n
! C2n
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Mathematical Meaning of Parallel Composition

t
n1 n1U1

|

= f : C2n1 ! C2n1 and

t
n2 n2U2

|

= g : C2n2 ! C2n2 entails . . .

u

wwwww
v

n1 n1

n2 n2

U1

U1

}

�����
~

= f ⊗ g : C2n1 ⊗ C2n2︸ ︷︷ ︸
∼= C2n1+n2

! C2n1 ⊗ C2n2︸ ︷︷ ︸
∼= C2n1+n2
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Two Warm-up Exercises

1. Show that
= H H

2. Prove that the circuit

X H

X H

can be built in two different ways and that despite that its
mathematical meaning is unambiguous

Our first case of quantum interference
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Turning f into a Quantum Operation pt. I

f : {0, 1} ! {0, 1} extends to a linear map C2 ! C2

. . . but not necessarily to an isometry

Example
When f is constant on 0 we obtain f |0⟩ = |0⟩ and f |1⟩ = |0⟩.
Then we know that

∥∥∥ 1√
2(|0⟩ + |1⟩)

∥∥∥ = 1 and calculate,∥∥∥f
(

1√
2(|0⟩ + |1⟩)

)∥∥∥ =
∥∥∥ 1√

2(|0⟩ + |0⟩)
∥∥∥ =

∥∥∥ 2√
2 |0⟩

∥∥∥ = 2√
2
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Turning f into a Quantum Operation pt. II

What is the problem intuitively?

f potentially loses information and it is general consensus that
pure quantum operations are reversible

Charles Bennett, 1973

N.b.: isometricity implies injectivity so if a map loses information
it cannot be isometric
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Turning f into a Quantum Operation pt. III

Proposed Solution
t

2 2Uf

|

= |x⟩ ⊗ |y⟩ 7! |x⟩ ⊗ |y ⊕ f (x)⟩

Addition modulo 2

Uf encodes f : Uf (|x⟩ ⊗ |0⟩) = |x⟩ ⊗ |0 ⊕ f (x)⟩ = |x⟩ ⊗ |f (x)⟩

Uf is reversible, in particular

2 2Uf Uf =
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Tackling the Problem via Quantum Parallelism pt. I

Need to somehow evaluate f with |0⟩ and |1⟩ in one step

So take the circuit
u

www
v

H
Uf

}

���
~

= Uf (H ⊗ I)

and calculate . . .
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Tackling the Problem via Quantum Parallelism pt. II

Uf (H ⊗ I) |0⟩ ⊗ |0⟩

= Uf
(

1√
2(|0⟩ + |1⟩) ⊗ |0⟩

)
{Defn. of H and I}

= Uf
(

1√
2(|00⟩ + |10⟩)

)
{⊗ distributes over +}

= 1√
2(|0⟩ |0 ⊕ f (0)⟩ + |1⟩ |0 ⊕ f (1)⟩) {Defn. of Uf }

= 1√
2(|0⟩ |f (0)⟩ + |1⟩ |f (1)⟩)︸ ︷︷ ︸
f (0) and f (1) in a single run

{0 ⊕ x = x}

. . . cannot extract this information from the resultant state :(

but fortunately no need to know the values of f (0) and f (1) – only
whether they are equal or not
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Tackling the Problem via Parallelism and Interference pt. I

We create an interference pattern dependent on this property

parallelism

interference pattern

wave collapse

|0⟩ H
Uf

H

1√
2(|0⟩ − |1⟩)

. . . and the wave collapse informs us
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An Auxiliary Computation

Uf (|x⟩ ⊗ (|0⟩ − |1⟩))
= Uf (|x⟩ |0⟩ − |x⟩ |1⟩) {⊗ distributes over + }
= |x⟩ |0 ⊕ f (x)⟩ − |x⟩ |1 ⊕ f (x)⟩ {Defn. of f }
= |x⟩ |f (x)⟩ − |x⟩ |¬f (x)⟩ {0 ⊕ x = x , 1 ⊕ x = ¬x}
= |x⟩ ⊗ (|f (x)⟩ − |¬f (x)⟩) {⊗ distributes over +}

We then proceed by case distinction

|x⟩ ⊗ (|f (x)⟩ − |¬f (x)⟩) =
{

|x⟩ ⊗ (|0⟩ − |1⟩) if f (x) = 0
|x⟩ ⊗ (|1⟩ − |0⟩) if f (x) = 1

and conclude

|x⟩ ⊗ (|f (x)⟩ − |¬f (x)⟩) = (−1)f (x) |x⟩ ⊗ (|0⟩ − |1⟩)

Renato Neves Back to our Problem 21 / 23



Tackling the Problem via Parallelism and Interference pt. II

(H ⊗ I)Uf (H ⊗ I) (|0⟩ ⊗ |−⟩)

= (H ⊗ I)Uf (|+⟩ ⊗ |−⟩) {. . . }

= 1√
2 (H ⊗ I)Uf ((|0⟩ + |1⟩) ⊗ |−⟩) {. . . }

= 1√
2 (H ⊗ I) (Uf |0⟩ ⊗ |−⟩ + Uf |1⟩ ⊗ |−⟩) {. . . }

= 1√
2 (H ⊗ I)

(
(−1)f (0) |0⟩ ⊗ |−⟩ + (−1)f (1) |1⟩ ⊗ |−⟩

)
{Previous slide}

=
{

(H ⊗ I)(±1) |+⟩ ⊗ |−⟩ if f (0) = f (1)
(H ⊗ I)(±1) |−⟩ ⊗ |−⟩ if f (0) ̸= f (1)

{Case distinction}

=
{

(±1) |0⟩ ⊗ |−⟩ if f (0) = f (1)
(±1) |1⟩ ⊗ |−⟩ if f (0) ̸= f (1)

{. . . }
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What’s Next?

A simplification of the first algorithm with ‘quantum advantage’
presented in literature [Deutsch, 1985]

All other quantum algorithms crucially rely on similar ideas of
quantum interference

We will study them in the following lectures
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