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Grover’s Problem

The Problem
Take a function f : {0, 1}n ! {0, 1}

There exists one x ∈ {0, 1}n such that f (x) = 1

Discover the x

Classically, need to evaluate f 2n times in the worst case

Quantumly, need to evaluate f around
√

2n times
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Applications

Grover’s problem occurs in a multitude of scenarios

• Searching through unstructured databases
• Finding passwords
• Route planning
• Solving SAT problems
• NP-problems in general
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Key Ideas

Like in all previous quantum algorithms, we will rely on

1. superposition
2. interference (to decrease amplitude of wrong answers and

increase amplitude of the right ones)
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Key Ideas: Superposition

Take f : {0, 1}2 ! {0, 1} with f (10) = 1

00 01 10 11
0

0.2

0.4

0.6

0.8

1

1
2

(
|00⟩ + |01⟩ + |10⟩ + |11⟩

)
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Key Ideas: Interference pt. I

Inversion about the mean: (x 7! (−x + mean) + mean)

00 01 10 11
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mean

before

00 01 10 11
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mean

after

Intuitively mass of some states was given to others
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Key Ideas: Interference pt. II

Mind the following particular case of inversion about the mean

00 01 10 11
−0.5

0

0.5

1

mean

before

00 01 10 11
−0.5

0

0.5

1

mean

after

Intuitively, mass of wrong answers was given to the right one
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The Steps

1. Put all possible answers in uniform superposition
2. Negate phases of the right answer
3. Invert about the mean
4. Repeat steps 2 and 3 until ensured we will measure the right

answer with high probability (≈
√

2n times)
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The Circuit

parallelism

introduction of local phases

inversion about the mean

n|0⟩ H⊗n

Uf

H⊗n P H⊗n

|−⟩

run
√

N times

Eigenvector of Uf with −1 as eigenvalue

N.B. It is often convenient to omit the bottom qubit

Renato Neves Putting inversion into practice 11 / 37



Adding Local Phases

Recall from last lectures the notion of phase kickback and that

Uf |x⟩ |−⟩ = (−1)f (x) |x⟩ |−⟩

In particular, if x is as solution of f we obtain a phase flip

Uf |x⟩ |−⟩ = (−1) |x⟩ |−⟩
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Inversion About the Mean pt. I

We start with the operation that phase flips basis states different
from |0⟩, i.e.

P = 2 |0⟩ ⟨0| − I

Then we calculate

H⊗n(2 |0⟩ ⟨0| − I)H⊗n

= (H⊗n(2 |0⟩ ⟨0|) − H⊗n)H⊗n

= H⊗n(2 |0⟩ ⟨0|)H⊗n − H⊗nH⊗n

= 2H⊗n |0⟩ ⟨0| H⊗n − I

Denoting H⊗n |0⟩ by |ψ⟩ we obtain,

2 |ψ⟩ ⟨ψ| − I
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Inversion About the Mean pt. II

1. Prove that |ψ⟩ ⟨ψ| = 1
N

∑
x ,y∈N |x⟩ ⟨y | with N = 2n

2. Prove that 2 |ψ⟩ ⟨ψ| − I is the desired inversion about the
mean
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Inversion About the Mean pt. III

(
2 1

N
∑

x ,y∈N |x⟩ ⟨y | − I
) ∑

k∈N αk |k⟩

= 2 1
N

∑
x ,y∈N |x⟩ ⟨y |

( ∑
k∈N αk |k⟩

)
−

∑
k αk |k⟩

= 2 1
N

∑
x ,y∈N

( ∑
k∈N αk⟨y , k⟩ |x⟩

)
−

∑
k αk |k⟩

= 2 1
N

∑
x ,y∈N αy |x⟩ −

∑
k αk |k⟩

= 2 1
N

∑
y∈N

αy︸ ︷︷ ︸
mean - α

∑
x∈N |x⟩ −

∑
k αk |k⟩

= ∑
x∈N 2α |x⟩ −

∑
k αk |k⟩

= ∑
k∈N(−αk + 2α) |k⟩
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Example: N = 23 = 8, w = 011

000 001 010 011 100 101 110 111
0

0.2

0.4

0.6

0.8

1
uniform superposition

000 001 010 011 100 101 110 111

−0.4

−0.2

0

0.2

0.4

mean

after oracle
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Example: N = 23 = 8, w = 011

000 001 010 011 100 101 110 111
−1

−0.5

0

0.5

1

mean

after oracle

000 001 010 011 100 101 110 111
−1

−0.5

0

0.5

1
inversion

At the end probability of measuring 011 is ≈ 94.5%
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Setting a Geometric Stage pt. I

In order to analyse Grover’s performance, it is useful to take the
following 2-dimensional geometrical perspective

Let |w⟩ be the "winner" state (i.e. f (w) = 1) and |r⟩ be the
uniform superposition of the remaining states i.e. 1√

N−1
∑

x ̸=w |x⟩

Both vectors yield 2-dimensional real vector space with
orthonormal basis {|w⟩ , |r⟩}

Also, uniform superposition |ψ⟩ = H⊗n |0⟩, i.e. our starting state,
rewritten as

1√
N |w⟩ +

√
N−1

N |r⟩

Renato Neves Analysis of Grover’s performance 20 / 37



Setting a Geometric Stage pt. I

In order to analyse Grover’s performance, it is useful to take the
following 2-dimensional geometrical perspective

Let |w⟩ be the "winner" state (i.e. f (w) = 1) and |r⟩ be the
uniform superposition of the remaining states i.e. 1√

N−1
∑

x ̸=w |x⟩

Both vectors yield 2-dimensional real vector space with
orthonormal basis {|w⟩ , |r⟩}

Also, uniform superposition |ψ⟩ = H⊗n |0⟩, i.e. our starting state,
rewritten as

1√
N |w⟩ +

√
N−1

N |r⟩

Renato Neves Analysis of Grover’s performance 20 / 37



Setting a Geometric Stage pt. I

In order to analyse Grover’s performance, it is useful to take the
following 2-dimensional geometrical perspective

Let |w⟩ be the "winner" state (i.e. f (w) = 1) and |r⟩ be the
uniform superposition of the remaining states i.e. 1√

N−1
∑

x ̸=w |x⟩

Both vectors yield 2-dimensional real vector space with
orthonormal basis {|w⟩ , |r⟩}

Also, uniform superposition |ψ⟩ = H⊗n |0⟩, i.e. our starting state,
rewritten as

1√
N |w⟩ +

√
N−1

N |r⟩

Renato Neves Analysis of Grover’s performance 20 / 37



Setting a Geometric Stage pt. I

In order to analyse Grover’s performance, it is useful to take the
following 2-dimensional geometrical perspective

Let |w⟩ be the "winner" state (i.e. f (w) = 1) and |r⟩ be the
uniform superposition of the remaining states i.e. 1√

N−1
∑

x ̸=w |x⟩

Both vectors yield 2-dimensional real vector space with
orthonormal basis {|w⟩ , |r⟩}

Also, uniform superposition |ψ⟩ = H⊗n |0⟩, i.e. our starting state,
rewritten as

1√
N |w⟩ +

√
N−1

N |r⟩

Renato Neves Analysis of Grover’s performance 20 / 37



Setting a Geometric Stage pt. II

Last slide gives rise to

1√
N

|r⟩

|w⟩

|ψ⟩
θ
2

Goal is to rotate |ψ⟩ so that it is as close as possible to |w⟩

sin
(

θ
2

)
= 1√

N
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Oracle and Inversion about the Mean, Geometrically

Also useful to revisit two operations under the light of the new
vector space. Namely

• the oracle (Uf )
• and inversion about the mean (2 |ψ⟩ ⟨ψ| − I)

We will see that (2 |ψ⟩ ⟨ψ| − I)Uf amounts to a counter-clockwise
rotation of θ radians
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The Oracle pt. I

It is defined by |x⟩ 7! |x⟩ if x ̸= w
|x⟩ 7! − |x⟩ otherwise

In particular for the basis {|w⟩ , |r⟩} we deduce|w⟩ 7! − |w⟩

|r⟩ 7! |r⟩

which corresponds to 2 |r⟩ ⟨r | − I

Renato Neves Analysis of Grover’s performance 23 / 37



The Oracle pt. II

(
2 |r⟩ ⟨r | − I

)
(a |w⟩ + b |r⟩) = −a |w⟩ + b |r⟩. Thus it corresponds

to reflection about the |r⟩-axis

|r⟩

|w⟩

v
α

Uf v

(
2 |r⟩ ⟨r | − I

)
(sinα |w⟩ + cosα |r⟩) = sin −α |w⟩ + cos −α |r⟩
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Inversion about the Mean

Analogously, 2 |ψ⟩ ⟨ψ| − I corresponds to reflection around the
|ψ⟩-axis

|r⟩

|w⟩

|ψ⟩

v

(
2 |ψ⟩ ⟨ψ| − I

)
v

θ
2

(
2 |ψ⟩ ⟨ψ| − I

)
(sin −α |w⟩ + cos −α |r⟩) = sin(α+ θ) |w⟩ + cos(α+ θ) |r⟩
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Analysis of Grover Iterations

Let G =
(
2 |ψ⟩ ⟨ψ| − I

)
Uf . Then

G
(

sinα |w⟩ + cosα |r⟩
)

= sin(α+ θ) |w⟩ + cos(α+ θ) |r⟩

Therefore

Gk
(

sinα |w⟩ + cosα |r⟩
)

= sin(α+ kθ) |w⟩ + cos(α+ kθ) |r⟩

In particular

Gk |ψ⟩ = sin
(

θ
2 + kθ

)
|w⟩ + cos

(
θ
2 + kθ

)
|r⟩
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Determining Grover’s Performance

Recall: goal is to rotate |ψ⟩ so that it is as close as possible to |w⟩

Formally, need to find integer k s.t. sin
(
kθ + θ

2

)
= 1 i.e.

kθ + θ
2 = π

2

Thus k = c.i.
(

π
2θ − 1

2

)
For very large N, we have θ

2 ≈ 1√
N and therefore

π
2θ − 1

2

≈ π
4√
N

− 1
2

= π
√

N
4 − 1

2

Thus Grover’s algorithm has complexity O(
√

N)

Renato Neves Analysis of Grover’s performance 27 / 37



Determining Grover’s Performance

Recall: goal is to rotate |ψ⟩ so that it is as close as possible to |w⟩

Formally, need to find integer k s.t. sin
(
kθ + θ

2

)
= 1 i.e.

kθ + θ
2 = π

2

Thus k = c.i.
(

π
2θ − 1

2

)

For very large N, we have θ
2 ≈ 1√

N and therefore

π
2θ − 1

2

≈ π
4√
N

− 1
2

= π
√

N
4 − 1

2

Thus Grover’s algorithm has complexity O(
√

N)

Renato Neves Analysis of Grover’s performance 27 / 37



Determining Grover’s Performance

Recall: goal is to rotate |ψ⟩ so that it is as close as possible to |w⟩

Formally, need to find integer k s.t. sin
(
kθ + θ

2

)
= 1 i.e.

kθ + θ
2 = π

2

Thus k = c.i.
(

π
2θ − 1

2

)
For very large N, we have θ

2 ≈ 1√
N and therefore

π
2θ − 1

2

≈ π
4√
N

− 1
2

= π
√

N
4 − 1

2

Thus Grover’s algorithm has complexity O(
√

N)
Renato Neves Analysis of Grover’s performance 27 / 37



Table of Contents

Overview

Putting inversion into practice

Analysis of Grover’s performance

Multiple Solutions

Renato Neves Multiple Solutions 28 / 37



Grover’s Problem Generalised to Multiple Solutions

The Problem
Take a function f : {0, 1}n ! {0, 1}

There exist M elements x ∈ {0, 1}n such that f (x) = 1

Discover one of such elements

Classically, need to evaluate f (2n − M) times in the worst case

Quantumly, need to evaluate f around
√

2n
M times
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Same Circuit

parallelism

introduction of local phases

inversion about the mean

n|0⟩ H⊗n

Uf

H⊗n P H⊗n

|−⟩

run
√

N
M times

Main difference is that inversion of local phases will be applied to
M states, not necessarily one

Eigenvector of Uf with −1 as eigenvalue
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Back to the Geometrical Perspective

Let |w⟩ be the uniform superposition of "winner" states i.e.
1√
M

∑
x a sol. |x⟩ and |r⟩ be the uniform superposition of the

remaining states i.e. 1√
N−M

∑
x not a sol. |x⟩

Both vectors yield a 2-dimensional vector space with orthonormal
basis {|w⟩ , |r⟩}

Also, uniform superposition |ψ⟩ can be rewritten as√
M
N |w⟩ +

√
N−M

N |r⟩
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Back to the Geometrical Perspective

Last slide gives rise to

|r⟩

|w⟩

√
M
N|ψ⟩

θ
2

Goal is to rotate the vector to become as close as possible to |w⟩

sin
(

θ
2

)
=

√
M
N
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Oracle and Inversion Revisited

Oracle operation 2 |r⟩ ⟨r | − I still corresponds to a reflection about
the |r⟩-axis

Inversion about the mean 2 |ψ⟩ ⟨ψ| − I still corresponds to a
reflection about the |ψ⟩-axis
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Analysis of Grover Iterations

Let G =
(
2 |ψ⟩ ⟨ψ| − I

)
Uf . Then

G
(

sinα |w⟩ + cosα |r⟩
)

= sin(α+ θ) |w⟩ + cos(α+ θ) |r⟩

Therefore

Gk
(

sinα |w⟩ + cosα |r⟩
)

= sin(α+ kθ) |w⟩ + cos(α+ kθ) |r⟩

In particular

Gk |ψ⟩ = sin
(

θ
2 + kθ

)
|w⟩ + cos

(
θ
2 + kθ

)
|r⟩
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Determining Grover’s Performance

Recall: goal is to rotate |ψ⟩ so that it is as close as possible to |w⟩

Formally, need to find integer k s.t. sin
(
kθ + θ

2

)
= 1 i.e.

kθ + θ
2 = π

2

Thus k = c.i.
(

π
2θ − 1

2

)
When M much smaller than N, we have θ

2 ≈
√

M
N and therefore

π
2θ − 1

2

≈ π

4
√

M
N

− 1
2

= π
√

N
4
√

M − 1
2

Thus Grover’s algorithm has complexity O(
√

N
M )
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Exercise

Let N = 4 and M = 2

What nº of Grover iterations would you choose?

What is the probability of succeeding with the chosen nº of
iterations?

How to improve the probability of success?
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To Follow . . .

Grover’s algorithm assumes that one knows the nº of solutions of
the problem a priori

In the following lectures we will see how to overcome such a
limitation
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