Quantum Search

Renato Neves

Universidade do Minho

Overview

Putting inversion into practice

Analysis of Grover's performance

Multiple Solutions

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0,1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate $f 2^n$ times in the worst case

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0,1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate $f 2^n$ times in the worst case

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

There exists one $x \in \{0, 1\}^n$ such that f(x) = 1

Discover the x

Classically, need to evaluate $f 2^n$ times in the worst case Quantumly, need to evaluate f around $\sqrt{2^n}$ times Grover's problem occurs in a multitude of scenarios

- Searching through unstructured databases
- Finding passwords
- Route planning
- Solving SAT problems
- NP-problems in general

Like in all previous quantum algorithms, we will rely on

- 1. superposition
- 2. interference (to decrease amplitude of wrong answers and increase amplitude of the right ones)

Key Ideas: Superposition

Take
$$f : \{0,1\}^2 \to \{0,1\}$$
 with $f(10) = 1$

Inversion about the mean: $(x \mapsto (-x + mean) + mean)$

Intuitively mass of some states was given to others

Mind the following particular case of inversion about the mean

Intuitively, mass of wrong answers was given to the right one

Overview

Putting inversion into practice

Analysis of Grover's performance

Multiple Solutions

Renato Neves

Putting inversion into practice

- 1. Put all possible answers in uniform superposition
- 2. Negate phases of the right answer
- 3. Invert about the mean
- 4. Repeat steps 2 and 3 until ensured we will measure the right answer with high probability ($\approx \sqrt{2^n}$ times)

N.B. It is often convenient to omit the bottom qubit

Recall from last lectures the notion of phase kickback and that

$$U_f \ket{x} \ket{-} = (-1)^{f(x)} \ket{x} \ket{-}$$

In particular, if x is as solution of f we obtain a phase flip

$$U_{f}\ket{x}\ket{-}=(-1)\ket{x}\ket{-}$$

Renato Neves

Putting inversion into practice

We start with the operation that phase flips basis states different from $|0\rangle,~\textit{i.e.}$

$$\mathsf{P}=2\left|0
ight
angle\left\langle 0
ight|-I$$

Then we calculate

$$H^{\otimes n}(2|0\rangle \langle 0| - I)H^{\otimes n}$$

= $(H^{\otimes n}(2|0\rangle \langle 0|) - H^{\otimes n})H^{\otimes n}$
= $H^{\otimes n}(2|0\rangle \langle 0|)H^{\otimes n} - H^{\otimes n}H^{\otimes n}$
= $2H^{\otimes n}|0\rangle \langle 0|H^{\otimes n} - I$

Denoting $H^{\otimes n} \left| 0 \right\rangle$ by $\left| \psi \right\rangle$ we obtain,

$$2\left|\psi\right\rangle\left\langle\psi\right|-I$$

- 1. Prove that $|\psi\rangle \langle \psi| = \frac{1}{N} \sum_{x,y \in N} |x\rangle \langle y|$ with $N = 2^n$
- 2. Prove that 2 $\left|\psi\right\rangle\left\langle\psi\right|-I$ is the desired inversion about the mean

$$\begin{aligned} \left(2\frac{1}{N} \sum_{x,y \in N} |x\rangle \langle y| - I \right) \sum_{k \in N} \alpha_k |k\rangle \\ &= 2\frac{1}{N} \sum_{x,y \in N} |x\rangle \langle y| \left(\sum_{k \in N} \alpha_k |k\rangle \right) - \sum_k \alpha_k |k\rangle \\ &= 2\frac{1}{N} \sum_{x,y \in N} \left(\sum_{k \in N} \alpha_k \langle y, k\rangle |x\rangle \right) - \sum_k \alpha_k |k\rangle \\ &= 2\frac{1}{N} \sum_{x,y \in N} \alpha_y |x\rangle - \sum_k \alpha_k |k\rangle \\ &= 2\frac{1}{N} \sum_{y \in N} \alpha_y \sum_{x \in N} |x\rangle - \sum_k \alpha_k |k\rangle \\ &= \sum_{x \in N} 2\alpha |x\rangle - \sum_k \alpha_k |k\rangle \\ &= \sum_{k \in N} (-\alpha_k + 2\alpha) |k\rangle \end{aligned}$$

Renato Neves

Putting inversion into practice

Example: $N = 2^3 = 8, w = 011$

At the end probability of measuring 011 is $\approx 94.5\%$

Overview

Putting inversion into practice

Analysis of Grover's performance

Multiple Solutions

Renato Neves

Analysis of Grover's performance

Let $|w\rangle$ be the "winner" state (*i.e.* f(w) = 1) and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-1}} \sum_{x \neq w} |x\rangle$

Let $|w\rangle$ be the "winner" state (*i.e.* f(w) = 1) and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-1}}\sum_{x\neq w} |x\rangle$

Both vectors yield 2-dimensional real vector space with orthonormal basis $\{|w\rangle, |r\rangle\}$

Let $|w\rangle$ be the "winner" state (*i.e.* f(w) = 1) and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-1}}\sum_{x\neq w} |x\rangle$

Both vectors yield 2-dimensional real vector space with orthonormal basis $\{\ket{w}, \ket{r}\}$

Also, uniform superposition $|\psi\rangle=H^{\otimes n}\,|0\rangle,$ *i.e.* our starting state, rewritten as

$$rac{1}{\sqrt{N}}\ket{w} + \sqrt{rac{N-1}{N}}\ket{r}$$

Setting a Geometric Stage pt. II

Last slide gives rise to

Goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$

Renato Neves

Analysis of Grover's performance

Also useful to revisit two operations under the light of the new vector space. Namely

- the oracle (U_f)
- and inversion about the mean (2 $|\psi\rangle\langle\psi|-I$)

Also useful to revisit two operations under the light of the new vector space. Namely

- the oracle (*U_f*)
- and inversion about the mean (2 $|\psi\rangle$ $\langle\psi|-I$)

We will see that $(2 |\psi\rangle \langle \psi| - I) U_f$ amounts to a counter-clockwise rotation of θ radians

It is defined by

$$egin{cases} |x
angle\mapsto |x
angle & ext{if } x
eq w \ |x
angle\mapsto -|x
angle & ext{otherwise} \end{cases}$$

In particular for the basis $\{\ket{w},\ket{r}\}$ we deduce

$$egin{cases} |w
angle\mapsto-|w
angle\ |r
angle\mapsto|r
angle \end{cases}$$

which corresponds to $2 |r\rangle \langle r| - I$

The Oracle pt. II

 $(2|r\rangle \langle r| - I)(a|w\rangle + b|r\rangle) = -a|w\rangle + b|r\rangle$. Thus it corresponds to reflection about the $|r\rangle$ -axis

$$\left(2\left|r
ight
angle\left\langle r
ight|-I
ight)(\sinlpha\left|w
ight
angle+\coslpha\left|r
ight
angle)=\sin-lpha\left|w
ight
angle+\cos-lpha\left|r
ight
angle$$

Renato Neves

Analysis of Grover's performance

Inversion about the Mean

Analogously, $2\left|\psi\right\rangle\left\langle\psi\right|-I$ corresponds to reflection around the $\left|\psi\right\rangle\text{-axis}$

$$(2 |\psi\rangle \langle \psi| - I)(\sin -\alpha |w\rangle + \cos -\alpha |r\rangle) = \sin(\alpha + \theta) |w\rangle + \cos(\alpha + \theta) |r\rangle$$

Renato Neves

Analysis of Grover's performance

Let
$$G = (2 |\psi\rangle \langle \psi| - I) U_f$$
. Then
 $G(\sin \alpha |w\rangle + \cos \alpha |r\rangle) = \sin(\alpha + \theta) |w\rangle + \cos(\alpha + \theta) |r\rangle$

Therefore

$$G^{k}\Big(\sinlpha\left|w
ight
angle+\coslpha\left|r
ight
angle\Big)=\sin(lpha+k heta)\left|w
ight
angle+\cos(lpha+k heta)\left|r
ight
angle$$

In particular

$$G^{k} |\psi\rangle = \sin\left(\frac{\theta}{2} + k\theta\right) |w\rangle + \cos\left(\frac{\theta}{2} + k\theta\right) |r\rangle$$

Determining Grover's Performance

Recall: goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$

Determining Grover's Performance

Recall: goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$ Formally, need to find integer k s.t. $\sin\left(k\theta + \frac{\theta}{2}\right) = 1$ *i.e.*

$$k\theta + \frac{\theta}{2} = \frac{\pi}{2}$$

Thus $k = \text{c.i.}\left(\frac{\pi}{2\theta} - \frac{1}{2}\right)$

Determining Grover's Performance

Recall: goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$ Formally, need to find integer k s.t. $\sin\left(k\theta + \frac{\theta}{2}\right) = 1$ *i.e.*

$$k\theta + \frac{\theta}{2} = \frac{\pi}{2}$$

Thus $k = c.i.\left(\frac{\pi}{2\theta} - \frac{1}{2}\right)$

For very large N, we have $\frac{\theta}{2} \approx \frac{1}{\sqrt{N}}$ and therefore

$$\frac{\frac{\pi}{2\theta} - \frac{1}{2}}{\approx \frac{\pi}{\frac{4}{\sqrt{N}}} - \frac{1}{2}}$$
$$= \frac{\pi\sqrt{N}}{4} - \frac{1}{2}$$

Thus Grover's algorithm has complexity $O(\sqrt{N})$

Renato Neves

Analysis of Grover's performance

Overview

Putting inversion into practice

Analysis of Grover's performance

Multiple Solutions

Renato Neves

Multiple Solutions

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

There exist *M* elements $x \in \{0, 1\}^n$ such that f(x) = 1

Discover one of such elements

Classically, need to evaluate $f(2^n - M)$ times in the worst case

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

There exist *M* elements $x \in \{0, 1\}^n$ such that f(x) = 1

Discover one of such elements

Classically, need to evaluate $f(2^n - M)$ times in the worst case Quantumly, need to evaluate f around $\sqrt{\frac{2^n}{M}}$ times

Main difference is that inversion of local phases will be applied to M states, not necessarily one

Let $|w\rangle$ be the uniform superposition of "winner" states *i.e.* $\frac{1}{\sqrt{M}}\sum_{x \text{ a sol.}} |x\rangle$ and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-M}}\sum_{x \text{ not a sol.}} |x\rangle$ Let $|w\rangle$ be the uniform superposition of "winner" states *i.e.* $\frac{1}{\sqrt{M}}\sum_{x \text{ a sol.}} |x\rangle$ and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-M}}\sum_{x \text{ not a sol.}} |x\rangle$

Both vectors yield a 2-dimensional vector space with orthonormal basis $\{\ket{w},\ket{r}\}$

Let $|w\rangle$ be the uniform superposition of "winner" states *i.e.* $\frac{1}{\sqrt{M}}\sum_{x \text{ a sol.}} |x\rangle$ and $|r\rangle$ be the uniform superposition of the remaining states *i.e.* $\frac{1}{\sqrt{N-M}}\sum_{x \text{ not a sol.}} |x\rangle$

Both vectors yield a 2-dimensional vector space with orthonormal basis $\{\ket{w},\ket{r}\}$

Also, uniform superposition $|\psi\rangle$ can be rewritten as

$$\sqrt{\frac{M}{N}} \ket{w} + \sqrt{\frac{N-M}{N}} \ket{r}$$

Back to the Geometrical Perspective

Last slide gives rise to

Goal is to rotate the vector to become as close as possible to $|w\rangle$

Oracle operation 2 $\left|r\right\rangle\left\langle r\right|-I$ still corresponds to a reflection about the $\left|r\right\rangle\text{-axis}$

Oracle operation 2 $|r\rangle\,\langle r|-I$ still corresponds to a reflection about the $|r\rangle\text{-axis}$

Inversion about the mean 2 $|\psi\rangle\,\langle\psi|-I$ still corresponds to a reflection about the $|\psi\rangle$ -axis

Let
$$G = (2 |\psi\rangle \langle \psi| - I) U_f$$
. Then
 $G(\sin \alpha |w\rangle + \cos \alpha |r\rangle) = \sin(\alpha + \theta) |w\rangle + \cos(\alpha + \theta) |r\rangle$

Therefore

$$G^{k}\left(\sin\alpha|w\rangle + \cos\alpha|r\rangle\right) = \sin(\alpha + k\theta)|w\rangle + \cos(\alpha + k\theta)|r\rangle$$

In particular

$$G^{k} \left|\psi\right\rangle = \sin\left(\frac{\theta}{2} + k\theta\right) \left|w\right\rangle + \cos\left(\frac{\theta}{2} + k\theta\right) \left|r\right\rangle$$

Determining Grover's Performance

Recall: goal is to rotate $|\psi
angle$ so that it is as close as possible to |w
angle

Determining Grover's Performance

Recall: goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$ Formally, need to find integer k s.t. $\sin\left(k\theta + \frac{\theta}{2}\right) = 1$ *i.e.*

$$k\theta + \frac{\theta}{2} = \frac{\pi}{2}$$

Thus $k = c.i.\left(\frac{\pi}{2\theta} - \frac{1}{2}\right)$

Determining Grover's Performance

Recall: goal is to rotate $|\psi\rangle$ so that it is as close as possible to $|w\rangle$ Formally, need to find integer k s.t. $\sin\left(k\theta + \frac{\theta}{2}\right) = 1$ *i.e.*

$$k\theta + \frac{\theta}{2} = \frac{\pi}{2}$$

Thus $k = c.i.\left(\frac{\pi}{2\theta} - \frac{1}{2}\right)$

When *M* much smaller than *N*, we have $\frac{\theta}{2} \approx \sqrt{\frac{M}{N}}$ and therefore

$$\begin{aligned} & \frac{\pi}{2\theta} - \frac{1}{2} \\ & \approx \frac{\pi}{4\sqrt{\frac{M}{N}}} - \frac{1}{2} \\ & = \frac{\pi\sqrt{N}}{4\sqrt{M}} - \frac{1}{2} \end{aligned}$$

Thus Grover's algorithm has complexity $O(\sqrt{\frac{N}{M}})$

Renato Neves

Multiple Solutions

Let N = 4 and M = 2

What n° of Grover iterations would you choose?

What is the probability of succeeding with the chosen n° of iterations?

How to improve the probability of success?

Grover's algorithm assumes that one knows the n° of solutions of the problem *a priori*

Grover's algorithm assumes that one knows the n° of solutions of the problem *a priori*

In the following lectures we will see how to overcome such a limitation