Setting an Exponential Separation between Quantum and Classical Computation

Renato Neves

Universidade do Minho

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

The Problem

Take a function $f : \{0,1\} \rightarrow \{0,1\}$

Either
$$f(0) = f(1)$$
 or $f(0) \neq f(1)$

Tell us whether the first or second case hold

Classically, need to run f twice. Quantumly, once is enough

The Problem

Take a function $f : \{0,1\} \rightarrow \{0,1\}$

Either
$$f(0) = f(1)$$
 or $f(0) \neq f(1)$

Tell us whether the first or second case hold

Classically, need to run f twice. Quantumly, once is enough

Can we have more impressive differences in complexity?

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

Definition

Let $v, u \in \mathbb{C}^{2^n}$ be vectors. If $u = e^{i\theta}v$ we say that it is equal to vup to global phase factor $e^{i\theta}$

Theorem

 $e^{i\theta}v$ and v are indistinguishable in the world of quantum mechanics

Proof sketch

Show that equality up to global phase is preserved by operators and normalisation + show that probability outcomes associated with v and $e^{i\theta}v$ are the same

Definition

We say that vectors $\sum_{x \in 2^n} \alpha_x |x\rangle$ and $\sum_{x \in 2^n} \beta_x |x\rangle$ differ by a relative phase factor if for all $x \in 2^n$

$$\alpha_x = e^{i\theta_x}\beta_x$$
 (for some angle θ_x)

Example

Vectors $|0\rangle+|1\rangle$ and $|0\rangle-|1\rangle$ differ by a relative phase factor

Definition

We say that vectors $\sum_{x \in 2^n} \alpha_x |x\rangle$ and $\sum_{x \in 2^n} \beta_x |x\rangle$ differ by a relative phase factor if for all $x \in 2^n$

$$\alpha_x = e^{i\theta_x}\beta_x$$
 (for some angle θ_x)

Example

Vectors $|0\rangle+|1\rangle$ and $|0\rangle-|1\rangle$ differ by a relative phase factor

Vectors that differ by a relative phase factor are distinguishable

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

The Phase Kickback Effect pt. I

Recall that every quantum operation \cancel{n} \underbrace{U} \cancel{n} gives rise to a controlled quantum operation, which is depicted below

Let v be an eigenvector of U (i.e. $Uv = e^{i\theta}v$) and calculate

$$cU((\alpha |0\rangle + \beta |1\rangle) \otimes v)$$

= $cU(\alpha |0\rangle \otimes v + \beta |1\rangle \otimes v)$
= $\alpha |0\rangle \otimes v + \beta |1\rangle \otimes e^{i\theta}v$
= $(\alpha |0\rangle + e^{i\theta}\beta |1\rangle) \otimes v$

What just happened?

What just happened?

 Global phase e^{iθ} (introduced to v) was 'kickedback' as a relative phase in the control qubit What just happened?

- Global phase e^{iθ} (introduced to v) was 'kickedback' as a relative phase in the control qubit
- Some information of U is now encoded in the control qubit

In general kickingback such phases causes interference patterns that give away information about ${\cal U}$

Consider the controlled-not operation

X has $|-\rangle$ as eigenvector with associated eigenstate -1. It thus yields the equation

$$cX \ket{b} \ket{-} = (-1)^b \ket{b} \ket{-}$$

with $|b\rangle$ an element of the computational basis

Back to Deutsch's Problem

Back to Deutsch's Problem

 U_f can be seen as a generalised controlled not-operation

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} = |x\rangle |y\rangle \mapsto \begin{cases} |x\rangle |y\rangle & \text{ if } f(x) = 0\\ |x\rangle \neg |y\rangle & \text{ if } f(x) = 1 \end{cases}$$

Renato Neves

 U_f can be seen as a generalised controlled not-operation

$$\begin{bmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} = |x\rangle |y\rangle \mapsto \begin{cases} |x\rangle |y\rangle & \text{if } f(x) = 0\\ |y\rangle \neg |y\rangle & \text{if } f(x) = 1 \end{cases}$$

Recall that $|-\rangle$ is an eigenvector of X with eigenstate -1. Thus analogously to before we deduce

$$U_f \ket{x} \ket{-} = (-1)^{f(x)} \ket{x} \ket{-}$$

interference pattern (created by phase kickback)

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

Albeit looking almost magical how we handled Deutsch's problem, the corresponding complexity difference between quantum and classical is unimpressive

Can we come up with a more impressive separation?

Lemma

For
$$a, b \in \{0, 1\}$$
 the equation $(-1)^a (-1)^b = (-1)^{a \oplus b}$ holds

Prook sketch

Build a truth table for each case and compare the corresponding contents

Definition

Given two bit-strings $x, y \in \{0, 1\}^n$ we define their product $x \cdot y \in \{0, 1\}$ as $x \cdot y = (x_1 \land y_1) \oplus \cdots \oplus (x_n \land y_n)$

Lemma

For any three binary strings $x, a, b \in \{0, 1\}^n$ the equation $(x \cdot a) \oplus (x \cdot b) = x \cdot (a \oplus b)$ holds

Proof sketch

Follows from the fact that for any three bits $a, b, c \in \{0, 1\}$ the equation $(a \land b) \oplus (a \land c) = a \land (b \oplus c)$ holds

Lemma

For any element $|b\rangle$ in the computational basis of \mathbb{C}^2 we have $H |b\rangle = \frac{1}{\sqrt{2}} \sum_{z \in 2} (-1)^{b \wedge z} |z\rangle$

Proof sketch

Build a truth table and compare the corresponding contents

Theorem

For any element $|b\rangle$ in the computational basis of \mathbb{C}^{2^n} we have $H^{\otimes n} |b\rangle = \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{b \cdot z} |z\rangle$

Proof sketch

Follows from induction on the size of n

Renato Neves

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

You are promised that $f(x) = s \cdot x$ for some fixed bit-string s

Find s

Classically, we run f *n*-times by computing

$$f(1...0) = (s_1 \land 1) \oplus \cdots \oplus (s_n \land 0) = s_1$$
$$\vdots$$
$$f(0...1) = (s_1 \land 0) \oplus \cdots \oplus (s_n \land 1) = s_n$$

Quantumly, we discover s by running f only once

Renato Neves

Bernstein-Vazirani's problem

interference pattern (created by phase kickback)

Renato Neves

Bernstein-Vazirani's problem

N.B. In order to not overburden notation we omit $\left|-\right\rangle$

$$\begin{split} H^{\otimes n} &|0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} |z\rangle & \{ \text{Theorem slide 18} \} \\ \frac{U_f}{\mapsto} \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{f(z)} |z\rangle & \{ \text{Definition slide 12} \} \\ \stackrel{H^{\otimes n}}{\mapsto} \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{f(z)} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) & \{ \text{Theorem slide 18} \} \\ &= \frac{1}{2^n} \sum_{z \in 2^n} \sum_{z' \in 2^n} (-1)^{(z \cdot s) \oplus (z \cdot z')} |z'\rangle & \{ \text{Lemma slide 16} \} \\ &= \frac{1}{2^n} \sum_{z \in 2^n} \sum_{z' \in 2^n} (-1)^{z \cdot (s \oplus z')} |z'\rangle & \{ \text{Lemma slide 17} \} \end{split}$$

Probability of measuring s at the end given by

$$\begin{aligned} \left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot (s \oplus s)} \left| s \right\rangle \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{z \cdot 0} \left| s \right\rangle \right|^2 \\ &= \left| \frac{1}{2^n} \sum_{z \in 2^n} 1 \left| s \right\rangle \right|^2 \\ &= \left| \frac{2^n}{2^n} \right|^2 \\ &= 1 \end{aligned}$$

This means that somehow all values yielding wrong answers were completely cancelled

T.P.C. Show exactly how all the wrong answers were cancelled

We went from running f n times to running just once

We went from running f n times to running just once Still not very impressive (at least for the Computer Scientist :-)) We went from running f n times to running just once Still not very impressive (at least for the Computer Scientist :-)) Can we do even better? Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

The Problem

Take a function $f : \{0,1\}^n \rightarrow \{0,1\}$

You are promised that f is either constant or balanced

Find out which case holds

Classically, we evaluate half of the inputs $(\frac{2^n}{2} = 2^{n-1})$, evaluate one more and run the decision procedure,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

which requires running $f 2^{n-1} + 1$ times

Quantumly, we know the answer by running f only once

interference pattern (created by phase kickback)

Renato Neves

Deutsch-Josza's problem

N.B. In order to not overburden notation we omit $|-\rangle$

$$\begin{aligned} H^{\otimes n} &|0\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} |z\rangle & \{\text{Theorem slide 18}\} \\ &\stackrel{U_f}{\mapsto} \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{f(z)} |z\rangle & \{\text{Definition slide 12}\} \\ &\stackrel{H^{\otimes n}}{\mapsto} \frac{1}{2^n} \sum_{z \in 2^n} (-1)^{f(z)} \left(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \right) & \{\text{Theorem slide 18}\} \end{aligned}$$

We then proceed by case distinction. Assume that f is constant

$$\frac{1}{2^{n}} \sum_{z \in 2^{n}} (-1)^{f(z)} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} |z'\rangle \right)$$

= $\frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} \left(\sum_{z' \in 2^{n}} (-1)^{z \cdot z'} |z'\rangle \right)$

Probability of measuring $\left|0\right\rangle$ at the end given by

$$\begin{aligned} \left| \frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} (-1)^{z \cdot 0} |0\rangle \right|^{2} \\ &= \left| \frac{1}{2^{n}} (\pm 1) \sum_{z \in 2^{n}} 1 |0\rangle \right|^{2} \\ &= \left| \frac{2^{n}}{2^{n}} \right|^{2} \\ &= 1 \end{aligned}$$

So if f is constant we measure $|0\rangle$ with probability 1. Now if f is balanced...

$$\begin{split} &\frac{1}{2^n} \sum_{z \in 2^n} (-1)^{f(z)} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) \\ &= \frac{1}{2^n} \Big(\sum_{z \in 2^n, f(z)=0} (-1)^{f(z)} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) \\ &+ \sum_{z \in 2^n, f(z)=1} (-1)^{f(z)} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) \Big) \\ &= \frac{1}{2^n} \Big(\sum_{z \in 2^n, f(z)=0} \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) \\ &+ \sum_{z \in 2^n, f(z)=1} (-1) \Big(\sum_{z' \in 2^n} (-1)^{z \cdot z'} |z'\rangle \Big) \Big) \end{split}$$

Renato Neves

Deutsch-Josza's problem

Probability of measuring $\left|0\right\rangle$ at the end given by

$$\begin{aligned} \left| \frac{1}{2^{n}} \Big(\sum_{z \in 2^{n}, f(z)=0} (-1)^{z \cdot 0} |0\rangle + \sum_{z \in 2^{n}, f(z)=1} (-1) (-1)^{z \cdot 0} |0\rangle \Big) \right|^{2} \\ &= \left| \frac{1}{2^{n}} \Big(\sum_{z \in 2^{n}, f(z)=0} |0\rangle + \sum_{z \in 2^{n}, f(z)=1} (-1) |0\rangle \Big) \right|^{2} \\ &= \left| \frac{1}{2^{n}} \Big(\sum_{z \in 2^{n}, f(z)=0} |0\rangle - \sum_{z \in 2^{n}, f(z)=1} |0\rangle \Big) \right|^{2} \\ &= 0 \end{aligned}$$

So if f is balanced we measure $|0\rangle$ with probability 0

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

The Problem

Take a function $f: \{0,1\}^n \to \{0,1\}$. The latter either constant or balanced

Find out which case holds

Classically, evaluate half of the inputs $(\frac{2^n}{2} = 2^{n-1})$, evaluate one more and run the decision procedure,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

Quantumly, we know the answer by running f only once

The Problem

Take a function $f: \{0,1\}^n \to \{0,1\}$. The latter either constant or balanced

Find out which case holds

Classically, evaluate half of the inputs $(\frac{2^n}{2} = 2^{n-1})$, evaluate one more and run the decision procedure,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

Quantumly, we know the answer by running f only once However . . .

- $f(x) = f(y) \Longrightarrow$ constant
- $f(x) \neq f(y) \Longrightarrow$ balanced

- $f(x) = f(y) \Longrightarrow$ constant
- $f(x) \neq f(y) \Longrightarrow$ balanced

Probability of giving the right answer?

- $f(x) = f(y) \Longrightarrow$ constant
- $f(x) \neq f(y) \Longrightarrow$ balanced

Probability of giving the right answer?

- f is constant \implies right answer with probability 1
- f is balanced \implies right answer with probability $\frac{2^{n-1}}{2^n} = \frac{1}{2}$

- $f(x) = f(y) \Longrightarrow$ constant
- $f(x) \neq f(y) \Longrightarrow$ balanced

Probability of giving the right answer?

- f is constant \implies right answer with probability 1
- f is balanced \implies right answer with probability $\frac{2^{n-1}}{2^n} = \frac{1}{2}$

Can we do better?

To solve the problem with some margin of error evaluate k arbitrary inputs x_1, \ldots, x_k ,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

To solve the problem with some margin of error evaluate k arbitrary inputs x_1, \ldots, x_k ,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

Probability of giving the right answer?

To solve the problem with some margin of error evaluate k arbitrary inputs x_1, \ldots, x_k ,

- output always the same \Longrightarrow constant
- otherwise \Longrightarrow balanced

Probability of giving the right answer?

- f is constant \implies right answer with probability 1
- f is balanced \implies right answer with probability ...

$$1 - \left(\frac{2^{n-1}}{2^n}\right)^k = 1 - \frac{1}{2^k}$$

Probability of observing the same output in k tries

The Problem

Take a 2-1 function $f : \{0,1\}^n \rightarrow \{0,1\}^n$

There exists a string $s \in \{0,1\}^n$ s.t. $f(x) = f(y) \Rightarrow y = x \oplus s$

Find out s

Classically, evaluate inputs until collision is detected, *i.e.* f(x) = f(y) for some x, y. Then compute $x \oplus y = x \oplus (x \oplus s) = s$ Since f is 2-1, after collecting 2^{n-1} evaluations with no collisions, next evaluation must cause a collision

So in the worst case we need $2^{n-1} + 1$ evaluations

How many evaluations do we need to have a collision with probability p?

How many evaluations do we need to have a collision with probability p?

To have a collision with probability $p = \frac{1}{k} \leq \frac{1}{2}$ we need

$$\approx \sqrt{(2 \cdot 2^n) \cdot p} = \sqrt{\frac{2}{k} \cdot 2^n} = \sqrt{\frac{2}{k}} \cdot \frac{2^{\frac{n}{2}}}{\sqrt{\frac{2}{k}}} \quad \text{evaluations}$$

See the Birthday's problem

How many evaluations do we need to have a collision with probability p?

To have a collision with probability $p = \frac{1}{k} \leq \frac{1}{2}$ we need

$$\approx \sqrt{(2 \cdot 2^n) \cdot p} = \sqrt{\frac{2}{k} \cdot 2^n} = \sqrt{\frac{2}{k} \cdot 2^{\frac{n}{2}}} \quad \text{evaluations}$$

See the Birthday's problem

But quantumly, we solve the problem in polynomial time with probability $\approx \frac{1}{4}$

- 1. Prepare superposition $\frac{1}{\sqrt{2}}(|x\rangle + |x \oplus s\rangle)$ for some string x
- 2. Use interference to extract a string y s.t. $y \cdot s = 0$
- 3. Repeat previous steps n 1 times to obtain system of equations s.t. $y_k \cdot s = 0$
- 4. Solve the system for s using Gaussian elimination

Complexity n³

Simon's Algorithm: Preparing the Superposition

N.B. $U_f |x\rangle |y\rangle = |x\rangle |y \oplus f(x)\rangle$

$$\begin{split} &U_f(H^{\otimes n} \otimes I) \ket{0} \ket{0} \\ &= U_f\left(\frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} \ket{x} \ket{0}\right) \\ &= \frac{1}{\sqrt{2^n}} \sum_{x \in 2^n} \ket{x} \ket{f(x)} \end{split}$$

We then measure the *n*-bottom qubits to obtain a superposition

$$\frac{1}{\sqrt{2}}(|x\rangle + |x \oplus s\rangle)$$

Renato Neves

Simon's problem

Simon's Algorithm: Extracting the String

 $|\psi\rangle \xrightarrow{n} H^{\otimes n} \xrightarrow{n}$

Simon's Algorithm: Extracting the String

$$|\psi\rangle \xrightarrow{n} H^{\otimes n} \xrightarrow{n}$$

$$\begin{aligned} H^{\otimes n} \frac{1}{\sqrt{2}} (|x\rangle + |x \oplus s\rangle) \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{(x \oplus s) \cdot y} |y\rangle \qquad \{\text{Theorem slide 18}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{x \cdot y \oplus s \cdot y} |y\rangle \qquad \{\text{Lemma slide 17}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{x \cdot y} (-1)^{s \cdot y} |y\rangle \qquad \{\text{Lemma slide 16}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} (1 + (-1)^{s \cdot y}) |y\rangle \end{aligned}$$

Simon's Algorithm: Extracting the String

$$|\psi\rangle \xrightarrow{n} H^{\otimes n} \xrightarrow{n}$$

$$\begin{aligned} H^{\otimes n} \frac{1}{\sqrt{2}} (|x\rangle + |x \oplus s\rangle) \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{(x \oplus s) \cdot y} |y\rangle \qquad \{\text{Theorem slide 18}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{x \cdot y \oplus s \cdot y} |y\rangle \qquad \{\text{Lemma slide 17}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} |y\rangle + (-1)^{x \cdot y} (-1)^{s \cdot y} |y\rangle \qquad \{\text{Lemma slide 16}\} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{y \in 2^n} (-1)^{x \cdot y} (1 + (-1)^{s \cdot y}) |y\rangle \end{aligned}$$

Destructive interference when $s\cdot y=1.$ We only observe $|y\rangle$ s.t. $s\cdot y=0$

Renato Neves

A system of n - 1 linearly independent equations,

$$\begin{cases} y_1 \cdot s = 0 \\ \cdots \\ y_{n-1} \cdot s = 0 \end{cases}$$

has two solutions. One is s = 0 but it violates the 2-1 promise. So only the other solution is of interest

A system of n - 1 linearly independent equations,

$$\begin{cases} y_1 \cdot s = 0 \\ \cdots \\ y_{n-1} \cdot s = 0 \end{cases}$$

has two solutions. One is s = 0 but it violates the 2-1 promise. So only the other solution is of interest

Probability of obtaining such a system of equations by running the circuit n - 1 times?

Homework

If $s \neq 0$ then for half of the inputs y we have $y \cdot s = 0$ and for the other half $y \cdot s = 1$

#	Possibilities of failure at each step	Probability of failure
1	{0}	$\frac{2^0}{2^{n-1}}$
2	$\{0, y_1\}$	$\frac{2^1}{2^{n-1}}$
3	$\{0, y_1, y_2, y_1 \oplus y_2\}$	$\frac{2^2}{2^{n-1}}$
n-1	$\{0, y_1, y_2, y_3 \dots\}$	$\frac{2^{n-2}}{2^{n-1}}$

Simon's Algorithm: Probability of Success

#	Possibilities of failure at each step	Probability of failure
1	{0}	$\frac{2^0}{2^{n-1}}$
2	$\{0, y_1\}$	$\frac{2^1}{2^{n-1}}$
3	$\{0, y_1, y_2, y_1 \oplus y_2\}$	$\frac{2^2}{2^{n-1}}$
n-1	$\{0, y_1, y_2, y_3 \dots\}$	$\frac{2^{n-2}}{2^{n-1}}$

Table yields the sequence of probabilities of failure,

 $\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots, \frac{1}{2^{n-1}}$ (from bottom to top)

Probability of failing in the first n-2 steps is thus

$$\frac{1}{4} + \frac{1}{8} + \dots = \frac{1}{4} \left(1 + \frac{1}{2} + \dots \right) \le \frac{1}{4} \cdot \left(\sum_{i \in \mathbb{N}} \frac{1}{2^i} \right) = \frac{1}{2}$$

Geometric series whose sum is equal to two

Probability of succeeding in the first n-2 steps at least $\frac{1}{2}$ Probability of succeeding in the (n-1)-th step is $\frac{1}{2}$ Thus probability of succeeding in all n-1 steps at least $\frac{1}{4}$ Probability of succeeding in the first n-2 steps at least $\frac{1}{2}$ Probability of succeeding in the (n-1)-th step is $\frac{1}{2}$ Thus probability of succeeding in all n-1 steps at least $\frac{1}{4}$

More advanced maths tell that the probability is slightly higher (around 0.28878...)

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani's problem

Deutsch-Josza's problem

Simon's problem

Conclusions

Exponential separation between classical and quantum...even if probabilities are involved

Exponential separation between classical and quantum... even if probabilities are involved

Always looking for a global property of f; not a local one

Exponential separation between classical and quantum...even if probabilities are involved

Always looking for a global property of f; not a local one

Superposition and interference were instrumental

- Exponential separation between classical and quantum... even if probabilities are involved
- Always looking for a global property of f; not a local one
- Superposition and interference were instrumental

Problems solved were somewhat contrived. In the next lectures we will analyse problems with broader applications