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The Problem
Take a function £ : {0,1} — {0,1}

Either £(0) = (1) or f(0) # f(1)

Tell us whether the first or second case hold

Classically, need to run f . Quantumly, is enough
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Take a function £ : {0,1} — {0,1}

Either £(0) = (1) or f(0) # f(1)

Tell us whether the first or second case hold

Classically, need to run f . Quantumly, is enough

Can we have more impressive differences in complexity?
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Global Phase Factor

Definition
Let v, u € C?" be vectors. If u = ev we say that it is equal to v
up to e

Theorem

e®v and v are indistinguishable in the world of quantum

mechanics

Proof sketch
Show that equality up to global phase is preserved by operators
and normalisation + show that probability outcomes associated

with v and ev are the same
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Relative Phase Factor

Definition
We say that vectors Y, con ax [x) and Y, con By |x) differ by a
if for all x € 2"

ax = e'%% B, (for some angle 6,)

Example
Vectors |0) + |1) and |0) — |1) differ by a relative phase factor
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Definition
We say that vectors Y, con ax [x) and Y, con By |x) differ by a
if for all x € 2"

ax = e'%% B, (for some angle 6,)

Example
Vectors |0) + |1) and |0) — |1) differ by a relative phase factor

Vectors that differ by a relative phase factor are

Global and local phases 6 /4



Table of Contents

Phase Kickback

Phase Kickback o



The Phase Kickback Effect pt. |

Recall that every quantum operation 4 " gives rise

to a controlled quantum operation, which is depicted below

n . n
U
Let v be an eigenvector of U (i.e. Uv = ev) and calculate

cU((aloy+B81))®v)
=clU(a|0)®@v+5|1)®v)
=al)@v+ 81y
=(a|0)+e“Bl1))®V
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What just happened?

= Global phase e (introduced to v) was 'kickedback’ as a
relative phase in the control qubit
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The Phase Kickback Effect pt. Il

What just happened?

= Global phase e (introduced to v) was 'kickedback’ as a
relative phase in the control qubit

= Some information of U is now encoded in the control qubit

In general kickingback such phases causes interference patterns
that give away information about U

Phase Kickback o Ju



The Phase Kickback Effect pt. 1l

Consider the controlled-not operation

——

_69_

X has |—) as eigenvector with associated eigenstate —1. It thus
yields the equation

cX|b) =) = (=1)*|b)[-)

with |b) an element of the computational basis

Phase Kickback i)
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Back to Deutsch’s Problem

parallelism wave collapse

Ur

interference pattern

Us can be seen as a generalised controlled not-operation

i {rx> y) i)
) =ly) i ()
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Back to Deutsch’s Problem pt. Il

Ur can be seen as a generalised controlled not-operation

e {x> y) G
Y)=ly) i ()

Recall that |—) is an eigenvector of X with eigenstate —1. Thus

0
1

analogously to before we deduce

Us |x) |=) = (=1)"™) |x) |-)
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Back to Deutsch’s Problem pt. 1l

parallelism wave collapse

interference pattern (created by phase kickback)

Phase Kickback i
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Going Beyond the Current Separation

Albeit looking almost magical how we handled Deutsch's problem,
the corresponding complexity difference between quantum and

classical is unimpressive

Can we come up with a more impressive separation?

Bernstein-Vazirani's problem 5



Setting the Stage

Lemma

For a, b € {0,1} the equation (—1)(—1)® = (—1)?® holds

Prook sketch

Build a truth table for each case and compare the corresponding
contents

Definition
Given two bit-strings x,y € {0,1}" we define their product
x-y€e{0,1}asx-y=0aAy1)® D (xn A yn)
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Setting the Stage

Lemma
For any three binary strings x,a, b € {0,1}" the equation
(x-a) @ (x-b)=x-(ad b) holds

Proof sketch

Follows from the fact that for any three bits a, b, c € {0,1} the
equation (aA b) @& (aAc)=aA (b c) holds

Bernstein-Vazirani's problem i



Setting the Stage

Lemma

For any element |b) in the computational basis of C*> we have
HIb) = & S en(~1)2%% |2)
Proof sketch

Build a truth table and compare the corresponding contents

Theorem

For any element |b) in the computational basis of C" we have

HE" b = b e (~1)P2|2)

Proof sketch

Follows from induction on the size of n

Bernstein-Vazirani's problem 0



Bernstein-Vazirani

The Problem
Take a function f : {0,1}" — {0,1}

You are promised that f(x) = s - x for some fixed bit-string s

Find s
Classically, we run f n-times by computing

f(l...0)=(s1A1)®---®(sp AO) =

f0..1)=(s1A0)@---D(sn A1) =

Quantumly, we discover s by running f only

Bernstein-Vazirani's problem 69



The Circuit

parallelism wave collapse

interference pattern (created by phase kickback)

Bernstein-Vazirani's problem 0 )



The Computation

N.B. In order to not overburden notation we omit |—)

H®" |0)

= \/% Y ze|2) {Theorem slide 18}
2 LS ean(-1)f @ |2) {Definition slide 12}
(o Tln ze2n(—1)f(z)(Zz'@n(—l)z'z/ \z’)) {Theorem slide 18}
= 3 Lzen Lyrean(—1)EIEED) ) {Lemma slide 16}
= 3 Lzean Laen(—1)70%2) |2)) {Lemma slide 17}

Bernstein-Vazirani's problem L



The Computation pt. Il

Probability of measuring s at the end given by

L5 con(—1)7(®9) |5y |2
L ean(-1)70s) |7

2
2% 2262” 1 ‘S> ’
212
on
= Il

This means that somehow all values yielding wrong answers were
completely cancelled

T.P.C. Show exactly how all the wrong answers were cancelled

Bernstein-Vazirani's problem o



Going Even Further Beyond

We went from running f n times to running just once
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Still not very impressive (at least for the Computer Scientist :-))
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Going Even Further Beyond

We went from running f n times to running just once
Still not very impressive (at least for the Computer Scientist :-))

Can we do even better?

Bernstein-Vazirani's problem -
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Deutsch-Josza

The Problem
Take a function f: {0,1}" — {0,1}

You are promised that f is either constant or balanced

Find out which case holds

Classically, we evaluate half of the inputs (22—n = 2"~1) evaluate

one more and run the decision procedure,

= output always the same = constant

= otherwise — balanced

which requires running f times

Quantumly, we know the answer by running f only

Deutsch- Josza's problem 5 )



The Circuit

parallelism wave collapse

interference pattern (created by phase kickback)
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The Computation

N.B. In order to not overburden notation we omit |—)
H®n ’0>

= \/% 2262" ‘Z>

{Theorem slide 18}
Ue % Y seon(—1)1@ |2) {Definition slide 12}
H®" 4
H

3 zezn(—l)f(z)(Zz/ezn(—l)z‘zl |z’>) {Theorem slide 18}
We then proceed by case distinction. Assume that f is constant

3 V(1) (Toen(-1)77 |2))

= 3(21) Yoo (Swean(-1)77|2) )

Renato Neves
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The Computation pt. Il

Probability of measuring |0) at the end given by

L(£1) X ean(—1)20|0) |

2
2 (£1) Y ,e0n 10) |
2" |2

on
=1

So if f is constant we measure |0) with probability 1. Now if f is
balanced. . .

Deutsch- Josza's problem o



The Computation pt. 1l

3 Tean(-1) D (Z,ean(-1)77 12))
= 3 ( Secr ool Soean(-157 1))
+ e (91 (D Swea -1 I2)) )
= 3 Secrnromo (Swen (177 I2))
+ e (D Swen(-15712) ) )

Deutsch- Josza's problem S



The Computation pt. IV

Probability of measuring |0) at the end given by

2
2 (Zoermreo(=1)7°[0) + Loeams(zya(-1)(=1)7°[0) )|
2
3 (e (z1=010) + Tean rz)2(—1) 0} )|

2% ( Zze2n7f(2):0 |0) — Zze2",f(2):1 10) ) ‘2
=0

So if f is balanced we measure |0) with probability 0

Deutsch- Josza's problem .
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Revisiting Deutsch-Josza

The Problem

Take a function f : {0,1}" — {0,1}. The latter either constant
or balanced

Find out which case holds

2"
2

Classically, evaluate half of the inputs (5 = ), evaluate one

more and run the decision procedure,

= output always the same =—> constant

= otherwise — balanced

Quantumly, we know the answer by running f only

Simon's problem -



Revisiting Deutsch-Josza

The Problem

Take a function f : {0,1}" — {0,1}. The latter either constant
or balanced

Find out which case holds

Classically, evaluate half of the inputs (

n
z= ), evaluate one

more and run the decision procedure,

= output always the same =—> constant

= otherwise — balanced

Quantumly, we know the answer by running f only

However . ..

Simon's problem -



Tackling Deutsch-Josza with Probabilities

To solve the problem with some margin of error evaluate two
arbitrary inputs x and y,

= f(x) = f(y) = constant
= f(x) # f(y) = balanced

Simon's problem .
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Tackling Deutsch-Josza with Probabilities

To solve the problem with some margin of error evaluate two
arbitrary inputs x and y,

= f(x) = f(y) = constant
= f(x) # f(y) = balanced

Probability of giving the right answer?

= f is constant = right answer with probability 1

= f is balanced = right answer with probability 2;1 =

N[

Can we do better?

Simon's problem .



Tackling Deutsch-Josza with Probabilities pt. Il

To solve the problem with some margin of error evaluate k

arbitrary inputs xi,..., Xk,

= output always the same = constant

= otherwise — balanced
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Tackling Deutsch-Josza with Probabilities pt. Il

To solve the problem with some margin of error evaluate k

arbitrary inputs xi,..., Xk,

= output always the same = constant

= otherwise =—> balanced
Probability of giving the right answer?

= f is constant = right answer with probability 1

= f is balanced = right answer with probability ...
k
=t 1
1- (%) =1-%
Probability of observing the same output in k tries

Simon's problem o



The Problem
Take a function f : {0,1}" — {0,1}

There exists a string s € {0,1}" s.t. f(x)=f(y)=>y=x®s
Find out s

Classically, evaluate inputs until collision is detected, i.e.

f(x) = f(y) for some x,y. Then compute x Dy =xP (xDs)=s

Since f is 2-1, after collecting 2"—1 evaluations with no collisions,

next evaluation must cause a collision

So in the worst case we need evaluations

Simon's problem e



Tackling Simon with Probabili

How many evaluations do we need to have a collision with
probability p?

Simon's problem e



Tackling Simon with Probabilities

How many evaluations do we need to have a collision with
probability p?

To have a collision with probability p = % < % we need

~ \/(2 2n).p= \/% Lon — \/% 22 evaluations

See the Birthday’s problem
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Tackling Simon with Probabilities

How many evaluations do we need to have a collision with

probability p?

To have a collision with probability p = % < % we need

~ \/(2 2n).p= \/% Lon — \/% 22 evaluations

See the Birthday’s problem

But quantumly, we solve the problem in polynomial time with

probability ~ 7

Simon's problem e



Simon’s Algorithm: The Key Steps

1. Prepare superposition %(\x) + |x @ s)) for some string x
2. Use interference to extract a string y s.t. y-s=0

3. Repeat previous steps n — 1 times to obtain system of

equations s.t. yx-s =20

4. Solve the system for s using Gaussian elimination

{

Complexity n

Simon's problem .



Simon’s Algorithm: Preparing the Superposition

Ur

) ——— 7

N.B. Ur [x) |y) = Ix) Iy @ f(x))

Ur(H®" & 1) [0) |0)

= Ur(F Lxear %) 10))

= = Ten X ()

We then measure the n-bottom qubits to obtain a superposition
Z(x) +Ix@s))

Simon's problem .



Simon’s Algorithm: Extracting the String
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Simon’s Algorithm: Extracting the String

HE" 5 (1x) + Ix @ s))

= ﬁ Dyean(=1)Y |y) + (—1)x@)y |y) {Theorem slide 18}
= \/;nﬁzyew 1YY |y) + (=1 Y@y ly) {Lemma slide 17}

(—
= o= Lyean (1) |y) + (= 1)X-Y(—1)s-y ly)  {Lemma slide 16}
(—

Simon's problem .



Simon’s Algorithm: Extracting the String

HO"25(1x) + Ix ©'5))
—1)%Y |y) + (1) @)y |y) {Theorem slide 18}
XY |y) 4 (—1)XYesY |y) {Lemma slide 17}

_ 1
= Wzyezn(

= \/zlnﬁ Z:y€2"(
= A T ean(-1)7 |y) + (1) (=1)*|y)  {Lemma slide 16}
(=11 + (1)) |y)

Destructive interference when s - y = 1. We only observe |y) s.t
s-y=0

Simon's problem .



The Circuit

state preparation string extraction by intro. of intrf.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
7
N
-

Simon's problem o



Simon’s Algorithm: Solving the System to Extract s

A system of n — 1 linearly independent equations,

y1-5s=0
Yn-1-5s=0

has two solutions. One is s = 0 but it violates the 2-1 promise. So
only the other solution is of interest

Simon's problem L



Simon’s Algorithm: Solving the System to Extract s

A system of n— 1 linearly independent equations,

y1-s=0

Yn-1-5s=0

has two solutions. One is s = 0 but it violates the 2-1 promise. So

only the other solution is of interest

Probability of obtaining such a system of equations by running the
circuit n — 1 times?

Simon's problem L



Simon’s Algorithm: Probability of Success

Homework

If s # 0 then for half of the inputs y we have y - s = 0 and for

the other half y-s =1

2k Possibilities of failure at each step | Probability of failure
1 {O} 2321
1
2 {OJyl} 2:21—1
2
3 {0, y1, 2, 71 ® yo} S
n—1 {Oa)/17}/27)/3~--} g::f

Simon's problem
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Simon’s Algorithm: Probability of Success

# Possibilities of failure at each step | Probability of failure
1 {0} =
2 {0,y1} 2
3 {0.y1,y2,y1 @ y2} o
n—1 {0,y1,y2,y5-- -} 2

Table yields the sequence of probabilities of failure,

) 3T (from bottom to top)

N[
ENE
[oe =S

Probability of failing in the first n — 2 steps is thus
1,1 1 1 <1 1) _ 1
i+ = (434 )<t (Ziend) =3

Geometric series whose sum is equal to two

Simon's problem o



Simon’s Algorithm: Probability of Success

N =

Probability of succeeding in the first n — 2 steps at least

Probability of succeeding in the (n — 1)-th step is %

Bl

Thus probability of succeeding in all n — 1 steps at least
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Simon’s Algorithm: Probability of Success

N =

Probability of succeeding in the first n — 2 steps at least

Probability of succeeding in the (n — 1)-th step is %

Bl

Thus probability of succeeding in all n — 1 steps at least

More advanced maths tell that the probability is slightly higher
(around 0.28878...)

Simon's problem o
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What Have We Learned?

Exponential separation between classical and quantum. . . even if
probabilities are involved
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What Have We Learned?

Exponential separation between classical and quantum. . . even if

probabilities are involved
Always looking for a global property of f; not a local one

Superposition and interference were instrumental

Problems solved were somewhat contrived. In the next lectures we
will analyse problems with broader applications

e o
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