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Previously. . .

The Problem
Take a function f : {0, 1} ! {0, 1}

Either f (0) = f (1) or f (0) ̸= f (1)

Tell us whether the first or second case hold

Classically, need to run f twice. Quantumly, once is enough

Can we have more impressive differences in complexity?
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Global Phase Factor

Definition
Let v , u ∈ C2n be vectors. If u = eiθv we say that it is equal to v
up to global phase factor eiθ

Theorem
eiθv and v are indistinguishable in the world of quantum
mechanics

Proof sketch
Show that equality up to global phase is preserved by operators
and normalisation + show that probability outcomes associated
with v and eiθv are the same
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Relative Phase Factor

Definition
We say that vectors ∑

x∈2n αx |x⟩ and ∑
x∈2n βx |x⟩ differ by a

relative phase factor if for all x ∈ 2n

αx = eiθxβx (for some angle θx )

Example
Vectors |0⟩ + |1⟩ and |0⟩ − |1⟩ differ by a relative phase factor

Vectors that differ by a relative phase factor are distinguishable
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The Phase Kickback Effect pt. I

Recall that every quantum operation n nU gives rise

to a controlled quantum operation, which is depicted below

n nU

Let v be an eigenvector of U (i.e. Uv = eiθv) and calculate

cU
(
(α |0⟩ + β |1⟩) ⊗ v

)
= cU(α |0⟩ ⊗ v + β |1⟩ ⊗ v)
= α |0⟩ ⊗ v + β |1⟩ ⊗ eiθv
= (α |0⟩ + eiθβ |1⟩) ⊗ v
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The Phase Kickback Effect pt. II

What just happened?

• Global phase eiθ (introduced to v) was ’kickedback’ as a
relative phase in the control qubit

• Some information of U is now encoded in the control qubit

In general kickingback such phases causes interference patterns
that give away information about U

Renato Neves Phase Kickback 9 / 46



The Phase Kickback Effect pt. II

What just happened?

• Global phase eiθ (introduced to v) was ’kickedback’ as a
relative phase in the control qubit

• Some information of U is now encoded in the control qubit

In general kickingback such phases causes interference patterns
that give away information about U

Renato Neves Phase Kickback 9 / 46



The Phase Kickback Effect pt. II

What just happened?

• Global phase eiθ (introduced to v) was ’kickedback’ as a
relative phase in the control qubit

• Some information of U is now encoded in the control qubit

In general kickingback such phases causes interference patterns
that give away information about U

Renato Neves Phase Kickback 9 / 46



The Phase Kickback Effect pt. III

Consider the controlled-not operation

X has |−⟩ as eigenvector with associated eigenstate −1. It thus
yields the equation

cX |b⟩ |−⟩ = (−1)b |b⟩ |−⟩

with |b⟩ an element of the computational basis
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Back to Deutsch’s Problem

parallelism

interference pattern

wave collapse

|0⟩ H
Uf

H

|−⟩

Uf can be seen as a generalised controlled not-operation
u

w
v

f

}

�
~ = |x⟩ |y⟩ 7!

|x⟩ |y⟩ if f (x) = 0
|x⟩ ¬ |y⟩ if f (x) = 1
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Back to Deutsch’s Problem pt. II

Uf can be seen as a generalised controlled not-operation
u

w
v

f

}

�
~ = |x⟩ |y⟩ 7!

|x⟩ |y⟩ if f (x) = 0
|y⟩ ¬ |y⟩ if f (x) = 1

Recall that |−⟩ is an eigenvector of X with eigenstate −1. Thus
analogously to before we deduce

Uf |x⟩ |−⟩ = (−1)f (x) |x⟩ |−⟩
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Back to Deutsch’s Problem pt. III

parallelism

interference pattern (created by phase kickback)

wave collapse

|0⟩ H H

|−⟩ f

Renato Neves Phase Kickback 13 / 46



Table of Contents

Overview

Global and local phases

Phase Kickback

Bernstein-Vazirani’s problem

Deutsch-Josza’s problem

Simon’s problem

Conclusions

Renato Neves Bernstein-Vazirani’s problem 14 / 46



Going Beyond the Current Separation

Albeit looking almost magical how we handled Deutsch’s problem,
the corresponding complexity difference between quantum and
classical is unimpressive

Can we come up with a more impressive separation?
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Setting the Stage

Lemma
For a, b ∈ {0, 1} the equation (−1)a(−1)b = (−1)a⊕b holds

Prook sketch
Build a truth table for each case and compare the corresponding
contents

Definition
Given two bit-strings x , y ∈ {0, 1}n we define their product
x · y ∈ {0, 1} as x · y = (x1 ∧ y1) ⊕ · · · ⊕ (xn ∧ yn)
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Setting the Stage

Lemma
For any three binary strings x , a, b ∈ {0, 1}n the equation
(x · a) ⊕ (x · b) = x · (a ⊕ b) holds

Proof sketch
Follows from the fact that for any three bits a, b, c ∈ {0, 1} the
equation (a ∧ b) ⊕ (a ∧ c) = a ∧ (b ⊕ c) holds

Renato Neves Bernstein-Vazirani’s problem 17 / 46



Setting the Stage

Lemma
For any element |b⟩ in the computational basis of C2 we have
H |b⟩ = 1√

2
∑

z∈2(−1)b∧z |z⟩

Proof sketch
Build a truth table and compare the corresponding contents

Theorem
For any element |b⟩ in the computational basis of C2n we have
H⊗n |b⟩ = 1√

2n

∑
z∈2n(−1)b·z |z⟩

Proof sketch
Follows from induction on the size of n
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Bernstein-Vazirani

The Problem
Take a function f : {0, 1}n ! {0, 1}

You are promised that f (x) = s · x for some fixed bit-string s

Find s

Classically, we run f n-times by computing

f (1 . . . 0) = (s1 ∧ 1) ⊕ · · · ⊕ (sn ∧ 0) = s1

...
f (0 . . . 1) = (s1 ∧ 0) ⊕ · · · ⊕ (sn ∧ 1) = sn

Quantumly, we discover s by running f only once
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The Circuit

parallelism

interference pattern (created by phase kickback)

wave collapse

n n|0⟩ H⊗n H⊗n

|−⟩ f
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The Computation

N.B. In order to not overburden notation we omit |−⟩

H⊗n |0⟩
= 1√

2n

∑
z∈2n |z⟩ {Theorem slide 18}

Uf7! 1√
2n

∑
z∈2n(−1)f (z) |z⟩ {Definition slide 12}

H⊗n
7! 1

2n
∑

z∈2n(−1)f (z)
( ∑

z ′∈2n(−1)z·z ′ |z ′⟩
)

{Theorem slide 18}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)(z·s)⊕(z·z ′) |z ′⟩ {Lemma slide 16}

= 1
2n

∑
z∈2n

∑
z ′∈2n(−1)z·(s⊕z ′) |z ′⟩ {Lemma slide 17}
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The Computation pt. II

Probability of measuring s at the end given by∣∣ 1
2n

∑
z∈2n(−1)z·(s⊕s) |s⟩

∣∣2
=

∣∣ 1
2n

∑
z∈2n(−1)z·0 |s⟩

∣∣2
=

∣∣ 1
2n

∑
z∈2n 1 |s⟩

∣∣2
=

∣∣2n

2n
∣∣2

= 1

This means that somehow all values yielding wrong answers were
completely cancelled

T.P.C. Show exactly how all the wrong answers were cancelled
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Going Even Further Beyond

We went from running f n times to running just once

Still not very impressive (at least for the Computer Scientist :-))

Can we do even better?
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Deutsch-Josza

The Problem
Take a function f : {0, 1}n ! {0, 1}

You are promised that f is either constant or balanced

Find out which case holds

Classically, we evaluate half of the inputs (2n

2 = 2n−1), evaluate
one more and run the decision procedure,

• output always the same =⇒ constant
• otherwise =⇒ balanced

which requires running f 2n−1 + 1 times

Quantumly, we know the answer by running f only once
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The Circuit

parallelism

interference pattern (created by phase kickback)

wave collapse

n n|0⟩ H⊗n H⊗n

|−⟩ f
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The Computation

N.B. In order to not overburden notation we omit |−⟩

H⊗n |0⟩
= 1√

2n

∑
z∈2n |z⟩ {Theorem slide 18}

Uf7! 1√
2n

∑
z∈2n(−1)f (z) |z⟩ {Definition slide 12}

H⊗n
7! 1

2n
∑

z∈2n(−1)f (z)
( ∑

z ′∈2n(−1)z·z ′ |z ′⟩
)

{Theorem slide 18}

We then proceed by case distinction. Assume that f is constant

1
2n

∑
z∈2n(−1)f (z)

( ∑
z ′∈2n(−1)z·z ′ |z ′⟩

)
= 1

2n (±1) ∑
z∈2n

( ∑
z ′∈2n(−1)z·z ′ |z ′⟩

)
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The Computation pt. II

Probability of measuring |0⟩ at the end given by∣∣ 1
2n (±1) ∑

z∈2n(−1)z·0 |0⟩
∣∣2

=
∣∣ 1

2n (±1) ∑
z∈2n 1 |0⟩

∣∣2
=

∣∣2n

2n
∣∣2

= 1

So if f is constant we measure |0⟩ with probability 1. Now if f is
balanced. . .
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The Computation pt. III

1
2n

∑
z∈2n(−1)f (z)

( ∑
z ′∈2n(−1)z·z ′ |z ′⟩

)
= 1

2n

( ∑
z∈2n,f (z)=0(−1)f (z)

( ∑
z ′∈2n(−1)z·z ′ |z ′⟩

)
+ ∑

z∈2n,f (z)=1(−1)f (z)
( ∑

z ′∈2n(−1)z·z ′ |z ′⟩
))

= 1
2n

( ∑
z∈2n,f (z)=0

( ∑
z ′∈2n(−1)z·z ′ |z ′⟩

)
+ ∑

z∈2n,f (z)=1(−1)
( ∑

z ′∈2n(−1)z·z ′ |z ′⟩
))
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The Computation pt. IV

Probability of measuring |0⟩ at the end given by∣∣∣ 1
2n

( ∑
z∈2n,f (z)=0(−1)z·0 |0⟩ + ∑

z∈2n,f (z)=1(−1)(−1)z·0 |0⟩
)∣∣∣2

=
∣∣∣ 1

2n

( ∑
z∈2n,f (z)=0 |0⟩ + ∑

z∈2n,f (z)=1(−1) |0⟩
)∣∣∣2

=
∣∣∣ 1

2n

( ∑
z∈2n,f (z)=0 |0⟩ −

∑
z∈2n,f (z)=1 |0⟩

)∣∣∣2
= 0

So if f is balanced we measure |0⟩ with probability 0
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Revisiting Deutsch-Josza

The Problem
Take a function f : {0, 1}n ! {0, 1}. The latter either constant
or balanced

Find out which case holds

Classically, evaluate half of the inputs (2n

2 = 2n−1), evaluate one
more and run the decision procedure,

• output always the same =⇒ constant
• otherwise =⇒ balanced

Quantumly, we know the answer by running f only once

However . . .
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Tackling Deutsch-Josza with Probabilities

To solve the problem with some margin of error evaluate two
arbitrary inputs x and y ,

• f (x) = f (y) =⇒ constant
• f (x) ̸= f (y) =⇒ balanced

Probability of giving the right answer?

• f is constant =⇒ right answer with probability 1
• f is balanced =⇒ right answer with probability 2n−1

2n = 1
2

Can we do better?
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Tackling Deutsch-Josza with Probabilities pt. II

To solve the problem with some margin of error evaluate k
arbitrary inputs x1, . . . , xk ,

• output always the same =⇒ constant
• otherwise =⇒ balanced

Probability of giving the right answer?

• f is constant =⇒ right answer with probability 1
• f is balanced =⇒ right answer with probability . . .

1 −
(

2n−1

2n

)k
= 1 − 1

2k

Probability of observing the same output in k tries
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Simon

The Problem
Take a 2-1 function f : {0, 1}n ! {0, 1}n

There exists a string s ∈ {0, 1}n s.t. f (x) = f (y) ⇒ y = x ⊕ s

Find out s

Classically, evaluate inputs until collision is detected, i.e.
f (x) = f (y) for some x , y . Then compute x ⊕ y = x ⊕ (x ⊕ s) = s

Since f is 2-1, after collecting 2n−1 evaluations with no collisions,
next evaluation must cause a collision

So in the worst case we need 2n−1 + 1 evaluations

Renato Neves Simon’s problem 35 / 46



Tackling Simon with Probabilities

How many evaluations do we need to have a collision with
probability p?

To have a collision with probability p = 1
k ≤ 1

2 we need

≈
√

(2 · 2n) · p =
√

2
k · 2n =

√
2
k · 2 n

2 evaluations

See the Birthday’s problem

But quantumly, we solve the problem in polynomial time with
probability ≈ 1

4
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Simon’s Algorithm: The Key Steps

1. Prepare superposition 1√
2(|x⟩ + |x ⊕ s⟩) for some string x

2. Use interference to extract a string y s.t. y · s = 0
3. Repeat previous steps n − 1 times to obtain system of

equations s.t. yk · s = 0
4. Solve the system for s using Gaussian elimination

Complexity n3
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Simon’s Algorithm: Preparing the Superposition

n

n

|0⟩ H⊗n

Uf

|0⟩

N.B. Uf |x⟩ |y⟩ = |x⟩ |y ⊕ f (x)⟩

Uf (H⊗n ⊗ I) |0⟩ |0⟩

= Uf
(

1√
2n

∑
x∈2n |x⟩ |0⟩

)
= 1√

2n

∑
x∈2n |x⟩ |f (x)⟩

We then measure the n-bottom qubits to obtain a superposition

1√
2(|x⟩ + |x ⊕ s⟩)
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Simon’s Algorithm: Extracting the String

n n|ψ⟩ H⊗n

H⊗n 1√
2(|x⟩ + |x ⊕ s⟩)

= 1√
2n+1

∑
y∈2n(−1)x ·y |y⟩ + (−1)(x⊕s)·y |y⟩ {Theorem slide 18}

= 1√
2n+1

∑
y∈2n(−1)x ·y |y⟩ + (−1)x ·y⊕s·y |y⟩ {Lemma slide 17}

= 1√
2n+1

∑
y∈2n(−1)x ·y |y⟩ + (−1)x ·y (−1)s·y |y⟩ {Lemma slide 16}

= 1√
2n+1

∑
y∈2n(−1)x ·y (1 + (−1)s·y ) |y⟩

Destructive interference when s · y = 1. We only observe |y⟩ s.t.
s · y = 0
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The Circuit

state preparation string extraction by intro. of intrf.

n

n

|0⟩ H⊗n

Uf

H⊗n

|0⟩
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Simon’s Algorithm: Solving the System to Extract s

A system of n − 1 linearly independent equations,
y1 · s = 0
. . .

yn−1 · s = 0

has two solutions. One is s = 0 but it violates the 2-1 promise. So
only the other solution is of interest

Probability of obtaining such a system of equations by running the
circuit n − 1 times?
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Simon’s Algorithm: Probability of Success

Homework
If s ̸= 0 then for half of the inputs y we have y · s = 0 and for
the other half y · s = 1

# Possibilities of failure at each step Probability of failure
1 {0} 20

2n−1

2 {0, y1} 21

2n−1

3 {0, y1, y2, y1 ⊕ y2} 22

2n−1

. . . . . . . . .
n − 1 {0, y1, y2, y3 . . . } 2n−2

2n−1
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Simon’s Algorithm: Probability of Success

# Possibilities of failure at each step Probability of failure
1 {0} 20

2n−1

2 {0, y1} 21

2n−1

3 {0, y1, y2, y1 ⊕ y2} 22

2n−1

. . . . . . . . .
n − 1 {0, y1, y2, y3 . . . } 2n−2

2n−1

Table yields the sequence of probabilities of failure,

1
2 ,

1
4 ,

1
8 , . . . ,

1
2n−1 (from bottom to top)

Probability of failing in the first n − 2 steps is thus

1
4 + 1

8 + · · · = 1
4

(
1 + 1

2 + . . .
)

≤ 1
4 ·

( ∑
i∈N

1
2i

)
= 1

2

Geometric series whose sum is equal to two
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Simon’s Algorithm: Probability of Success

Probability of succeeding in the first n − 2 steps at least 1
2

Probability of succeeding in the (n − 1)-th step is 1
2

Thus probability of succeeding in all n − 1 steps at least 1
4

More advanced maths tell that the probability is slightly higher
(around 0.28878 . . . )
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What Have We Learned?

Exponential separation between classical and quantum. . . even if
probabilities are involved

Always looking for a global property of f ; not a local one

Superposition and interference were instrumental

Problems solved were somewhat contrived. In the next lectures we
will analyse problems with broader applications
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