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Introduction to measurement-based quantum computation

Outline:

* Clifford circuits
* Pauli and Clifford groups
e Simulability of Clifford circuits
* Upgrading Clifford circuits to universal QC

* How MBQC works
* One-bit teleportation circuit
* Gate teleportation
* Concatenating MBQC gates
* Resources for MBQC: graph and cluster states

* Experimental implementations

* Resources for MBQC: contextuality and non-locality
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Basics of the circuit model

* The most well-known model for quantum computation is the circuit model, obtained in
analogy with classical circuits
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Clifford circuits

* Pauli group: tensor products of-I-[, -|-i[, )(, /

- example: —iZl ] Xz u ]3



Clifford circuits

*  Pauli group: tensor products of -/ +7]. X /

- example: —iZl ] X2 ] ]3

* Clifford group: unitaries C that map Paulis into Paulis:
CPC"=P. < CP=PC

* Clifford group is generated by {H, P, CNOT}
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* Clifford circuits create large amounts of entanglement, are useful for

teleportation, error correction...
...but are efficiently simulable.




Clifford circuits

* Pauli group: tensor products of-I-[, +i[, )(, /

Clifford group: unitaries C that map Paulis into Paulis:

CPC* =P, &CP=PC
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The key simulation idea is to use Heisenberg picture:
* initial state is eigenstate of Pauli operator

* each Clifford gate maps it into a new Pauli (efficient computation)
* keep track of the Pauli transformation until end, when measurement outcomes

can be efficiently computed.

Clifford circuits are not believed even to be able to do universal classical

computation...




Example: Heisenberg simulation of Clifford circuit

R X 7 R b) A:CNOT(1—-2) X; XX
7 53X A B C X, I®X
@) P Zi ZQI
P X =Y P |5 l T l Zy, Z®@Z
s — 7 | T N P

) B:CNOT(2—1) X, I®X
CNOT X®I->X®X X, X®X
IRX —-I®X ‘ Z, Z®Z

ZRI—-Z®I =1
I®RZLZ—-72872 o LRI
C:CNOT(1—-2) X, I®X
X, X@I
Z, I®Z
Zy Z®I

* The key simulation idea is to use Heisenberg picture:
* initial state is eigenstate of Pauli operator
* each Clifford gate maps it into a new Pauli (efficient computation)
* keep track of the Pauli transformation until end, when measurement outcomes
can be efficiently computed.



“Upgrading” a Clifford computer

* Clifford:{H, P,Z,CNOT}, all that's missing is T gate
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“Upgrading” a Clifford computer

* Clifford:{H, P,Z,CNOT}, all that's missing is T gate

There’s a work-around using:

* magic input states and
* adaptativity

[Bravyi, Kitaev PRA 71, 022136
(2005)]
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“Upgrading” a Clifford computer

* Clifford:{H, P,Z,CNOT}, all that's missing is T gate

There’s a work-around using:

* magic input states and
* adaptativity

[Bravyi, Kitaev PRA 71, 022136
(2005)]
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“Upgrading” a Clifford computer

* Clifford:{H, P,Z,CNOT}, all that's missing is T gate

There’s a work-around using:
* magic input states and

* adaptativity
[Bravyi, Kitaev PRA 71, 022136

(2005)]
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Relevant for topological quantum computation with anyons, as for example Ising

is universal for QC

0)
o

(H,P,Z,CNOT)

Clifford

X |-

model implements Clifford operations in a topologically protected way




Measurement-based quantum computation
(MBQC)

information flow
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MBQC: basic ingredients

* C(Class of QC models where the computation is driven by measurements on previously
entangled states

1- Initialization by CZ gates on I/ states;

2- Sequence of single-qubit, adaptive
measurements.

* Origin: gate teleportation idea [Gottesman, Chuang, Nature 402, 390 (1999)]
* Most well-know variant is the one-way model (1WQC)[Raussendorf, Briegel PRL 86, 5188 (2001)]

* Brief introduction to MBQC based on McKague’s paper “Interactive proofs for BQP
via self-tested graph states” arxiv:1309.5675 (2013)



MBQC: step-by-step

3 versions of the “1-bit Z teleportation” circuit:
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X measurement result controls Z gate

Direct calculation shows this works



MBQC: step-by-step

3 versions of the “1-bit Z teleportation” circuit:

% * @:n
0) D
U
v)
I

o)

2w

—|w)

X measurement result controls Z gate

Direct calculation shows this works

|dentity transforms CNOT into CZ



MBQC: step-by-step

3 versions of the “1-bit Z teleportation” circuit:

W> * E:n * X measurement result controls Z gate

\0) an 7 ‘ > Direct calculation shows this works
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‘l//> I B * Identity transforms CNOT into CZ
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‘W> % X ):Ov * Left H incorporated in input ‘+>
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MBQC: step-by-step

3 versions of the “1-bit Z teleportation” circuit:

‘W> * E:n * X measurement result controls Z gate

Direct calculation shows this works
0) —|y)

‘l//> I Ezﬂ * Identity transforms CNOT into CZ

D
N
N

W> I EZH * Left Hincorporated in input ‘+>
+)

X o _‘ ';V> * HZ = XH identity

So far: no computation, but: ancilla initialized in \+>state; CZ gate creates

antfanalamant
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MBQC: step-by-step

Now let’s teleport the unitary U(O)=exp(i6Z / 2
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MBQC: step-by-step

Now let’s teleport the unitary U(0)=exp(i6Z /2)

v)

EZ-H

X
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U commutes with CZ



MBQC: step-by-step

Now let’s teleport the unitary U(0)=exp(i0Z /2

v) ﬂ@:ﬂ * U commutes with CZ
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MBQC: step-by-step

Now let’s teleport the unitary U(0) =exp(i6Z / 2}

‘l//>— U(0) I Ezﬂ * U commutes with CZ
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MBQC: step-by-step

Now let’s teleport the unitary U(0) = exp(i0Z / 2}

‘l//>— U(0) I Ezﬂ * U commutes with CZ

X HrU@|y)

‘l//> U(9) X * U followed by X-measurement =
measurement in x-y plane of Bloch
+) xEITHE U sphere: .
OlY) U XU = R(0)= cos(O)X +sin()Y

0>




MBQC: step-by-step

Now let’s teleport the unitary U(0) = exp(i0Z / 2}
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U commutes with CZ

U followed by X-measurement =
measurement in x-y plane of Bloch
sphere: .

U XU = R(0)=cos(6)X +sin(8)Y
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MBQC: step-by-step

Now let’s teleport the unitary U(9) = exp(i0Z / 2}

U commutes with CZ

U followed by X-measurement =
measurement in x-y plane of Bloch

sphere:
U™ XU = R(0)=cos(0).X +sin(8)Y

ly)——U(0) I @Eﬂ y
+) X HFu®)|w)
v) I U (6) EZH '
+) X[ H]U©O)|y)
v) I R(6)
+) X HH—U®O|y)

Evolved stateU()|y) is teleported, via entanglement and
right choice of measurement basis of top qubit
(gate teleportation idea of Gottesman and Chuang)




MBQC: step-by-step

Now two different unitaries in sequence:
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Two gate teleportations, without final H gates,
result in final state

HU(Qz)HU(Hl)‘ ‘//>



MBQC: step-by-step

Now two different unitaries in sequence:

w) R(6,) * Two gate teleportations, without final H gates,
I result in final state
+) X R(0>)
il HU(6,)HU(6)| )
[+ X~
* Now commute X and CZ, which requires
adding Z gate controlled by measurement 1
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MBQC: step-by-step

Now two different unitaries in sequence:

w) R(6,) * Two gate teleportations, without final H gates,
I result in final state
+) X R(0>)
i HU(6,)HU(8),)|y)
+) X -
* Now commute X and CZ, which requires
adding Z gate controlled by measurement 1

v) R(6,) —s

1) I X R(6,) * Incorporate X Correc?tion in_to measurement

I :ﬂ angle of 2. When X is applied
+) Z X f— because:

0, — -0, XR(6)X=R(-6)




MBQC: step-by-step

Now two different unitaries in sequence:

‘ W> I R(0:)
+)

Two gate teleportations, without final H gates,
result in final state

HU(Qz)HU(Hl)‘ W>

Now commute X and CZ, which requires
adding Z gate controlled by measurement 1

Incorporate X correction into measurement
angle of 2. When X is applied
because:

0, » -0, XR(O)X=R(-0)

By adapting measurement 2 according to
outcome of 1, we can apply

HU(6, )HU(‘91)‘ W>
Easy to extend to multiple single-qubit

unitaries, and{HU(8)}is universal set for 1
qubit

Adaptivity allows for any single-qubit unitary to be implemented in the one-way model
CZ gates can be implemented similarly, propagation to beginning induces extra corrections




MBQC: step-by-step

How do corrections affect future
measurements? We can have both X and Z

corrections:
Outcomes of previous measurements:

z,x {11}

As XR(6)X =R(-0) , X corrections turng — —@

As ZR(60)Z=-R(0) . Z corrections invert
the output




MBQC: step-by-step

* How do corrections affect future z ——e

measurements? We can have both X and Z T

corrections:

Outcomes of previous measurements:

z,x [ {—-1L1}

* As XR(0)X=R(-0) , X corrections turng — —g

* As ZR(0)Z=-R(0) . Z corrections invert
the output

X correction ~




MBQC: step-by-step

* How do corrections affect future z =9
measurements? We can have both X and Z T
corrections:

Outcomes of previous measurements:
z,x 1 {=1L1}
* As XR(0)X=R(-0) , X corrections turng — —g
X
e As ZR(0)Z =—R(6) . Z corrections invert
the output
0>
_ +1-1
X correction )
Z correction -1
+1e—
=" 0 ly>




MBQC: step-by-step

* How do corrections affect future

measurements? We can have both X and Z

corrections:

Outcomes of previous measurements:

z,x [ {=11}

* As XR(0)X=R(-0) , X corrections turng — —g

* As ZR(0)Z=-R(0) . Z corrections invert

the output

0>

X correction
Z correction

) ﬂ

R($9)> —— M2

Classical control computer needs
only store&update sum modulo 2
of X and Z corrections of each qubit

This parity computer is quite
simple, but together with the

guantum resource yields universal
QC




Entanglement resources for MBQC

* Graph states: class of states obtainable by

1. Initialization of a set of qubits in ‘+>
states
2. CZ gates between neighboring vertices

° Examplpeg:graph

- No. 7 (5 qubits): sufficient for any single qubit
unitary
- No. 3 (4 qubits): sufficient for CNOT



Entanglement resources for MBQC

Graph states: class of states obtainable by No. 1 No.2

1. Initialization of a set of qubits in‘+> — Fs . L \
states 2

2. CZ gates between neighboring vertices  xos No.6 1

Examplpeg:graph 27P5 265

No. 7 (5 qubits): sufficient for any single qubit
unitary
No. 3 (4 qubits): sufficient for CNOT

Alternative characterization of graph states:

Unique state which is simultaneous eigenstate
(with eigenvalue 1) of set of operators

K =X i Z
J neighbor of 1

Are there families of graph states which are universal for QC?




Entanglement resources for MBQC

* Graph states: different graphs may be local-unitary equivalent.

Example: GHZ states

* Local complementation: local Clifford Ne-b ez oS ot
unitaries that map a given graph state to / !
all its Clifford LU equivalent graph states ) /4 ;'V4 ; ) 1ﬁ>4
- Simple interpretation in terms of graph - .: 3 - o

5 No. 6 No. 7 No. 8
change: choose vertex, complement l . ] ]
subgraph of neighbors ; q/ 4 . /D_

2 4 2 4 2 / 4 2 4
> a > ;

3 2 3

No.1 —— No.?2 > No. 3

No. 9 No. 11
.l l l ® Apply LC—Rule
1 - 3 1
No.4 —— No.5H > No. 6
. 2 4 :' 4 2 4
No.7 —>— No.8 — No.9 ——
3 3 3

No. 10 ————— No. 11

No. 10




Entanglement resources for MBQC

 Stabilizer
measurements take
graph states to graph
states:




Entanglement resources for MBQC

M. HEIN, W.DUR, J. EISERT,R. RAUSSENDORF, M. VAN DEN NEST and H.-J. BRIEGEL
21 22 23 24 25 26 27 28 29 30 31 32 33

o . —0—o N
o999+ 9o 9 o o [ Input (measured in x)
17| 18 19| 20
*—o > o B Output
—_—— ——— — ——— — — —
z—Measurements
8 9| 10/ 11 12 13| 14| 15 16
H—eo o 0o o 0 o 0 =
| ® y-Measurements
6 7

S S R N D (N S S S N PNEPS ® x—Measurements

® non-Pauli-Measurements
I H e o O &

1 2 3 4 5

from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", Varenna,
ltaly (2005)

T3) ’ ? H— |y)
To) T H R,rfg —— |y2) 3'qu|t QFT
1) H RrrfE Rrrjai v3)

* Example of universal graph: 2D square lattice (called cluster state)
* Above: MBQC implementation of 3-qubit discrete Fourier Transform

* “Unwanted” vertices deleted by Z-measurements; resulting corrections must be
taken into account



Entanglement resources for MBQC

* Some known universal resources for MBQC: 2D triangular, hexagonal, Kagome
lattices

= s s
s = = »
s » e @

''''''''

A
- These resources are "universal state preparators” = strong notion of universality

* Otherresource states enable simulation of classical measurement statistics of any
universal quantum computer = weaker notion of universality

- Some of these require a universal classical computer (instead of a parity
computer) [Gross et al., PRA 76, 052315 (2007)]

* Universality also for ground state of 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) model
[Wei, Affleck, Raussendorf PRL 106, 070501 (2011)]

* MBQC on some resource states is known to be simulable, e.g. on 1D chain
[Markov, Shi, SIAM J. Comput. 38, 963 (2008)]



MBQC - implementations

* Optical lattices — counter-propagating laser beams trap cold neutral atoms
* Challenge: single-site addressing

Addressing laser beam e

Microwave
6.8 GHz

—n

x L e © *a.=532nm

Atoms in 2D optical lattice

from: Weintenberg et al., Nature 471, 319
(2011)

* Proof-of-principle implementations
using photons
* Topological error-correction using
eight-photon cluster states

from: Yao et al., Nature 482, 489 (2012)




MBQC - implementations

* Using one-way model to advantage: building large resource states from probabilistic

operations; at once or on the go
(b)

Measure Entangle

non-deterministic \‘) O:_ -9 QO QO Q
CZ-gate y i.—,e o o.“ % ---O 0 0 O
E: | @ 0 -Q @ O Q
f\ o—o—9 : I.""\ 7 .
e X 9 Q9 0 0 0
8 = e
from: Briegel et al., Nat. Phys. 5 (1), 19 from: O’Brien, Science 318, 1467

(2009) (2007)
* Schemes for adapting imperfect clusters for MBQC

1) deletion and contraction I'_.'! 1 & 0Q.2]

v initial Baudty square lattice

from: Browne et al., New J. Phys. 10, 023010 (2008)



Universal QC with measurement-based quantum computation

* Measurement-based quantum computation (MBQC) relies only on
* entangling gates;
* adaptive single-qubit measurements.
* Teleportation-based gates — states are teleported (and transformed) step by step

Measure Entangle

O 9900909090 0 0 0
Q o_*’b 909990 O 0 O
Q 0 O 00U 09 0 90 O

from: O'Brien, Science 318, 1467 (2007)

* MBQC is uniquely suited to photonic quantum computation:
* Photons fly away fast...
* ...so they are stored for short times, measured, and information teleported to
fresh photons.
* Approach being pursued by US company PsiQuantum (> 3 billion US$ valuation)



Universal QC with measurement-based quantum computation
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* MBQC using 3-photon GHZ-state sources on-chip: [Rudolph, arXiv:160708535]

* (2+1)-dimensional architecture

* probabilistic entangling gates sufficient, if above percolation threshold (essential
use of error correction)

* adaptive single-qubit measurements (delay lines)

* Key advantages: room-temperature chips (small cryo units for e.g. detectors),
compatible with major chip foundry techniques, i.e. potentially scalable



INL in 2 EC-funded projects on photonic quantum computation

using

noec
Photonics Quantum Sampling Machine

ERC Advanced Grant QU-BOSS (*Quantum H2020 FETOPEN PHOQUSING (“Photonic
advantage via non-linear Boson Sampling”) Quantum Sampling Machine”)
2020-2025 2020-2024
* PI: Fabio Sciarrino (Univ. of Rome, La Sapienza) . _ : L : :
* Partners: Istituto de Fotonica e Nanotecnologie PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)

(IFN-CNR — Milan), INL « Partners: CNR (IT), CNRS (FR), Sorbonne Univ.

(FR), Verigloud (FR), QuiX BV (NL), INL

* Development of complex linear and non-linear interferometers

Theoretical characterization of photonic indistinguishability, resources such as contextuality and coherence
Scalability of photonic QC, MBQC ideas

* Noisy, Intermediate-Scale Quantum (NISQ) computational applications: variational algorithms,
randomness manipulation, cryptography, quantum chemistry



Application: blind quantum computation

* C(Classical/quantum separation in MBQC allow for implementation of novel protocols —
such as blind quantum computation

* Here, client has limited quantum capabilities, and uses a server to do computation for
her.

* Blind = server doesn’t know what's being computed.

random state O---- @
generation /
& ===
___________________ measurement O===
q angle
update , _...;"
rule - r—L @
e eeeeenneeenot measurement
result *—o—0 0900

Broadbent, Fitzsimons, Kashefi, axiv:0807.4154 [quant-ph]



Which resource gives MBQC its power?

* C(Clearly, the correlations in the resource state.

* Analysis of MBQC protocols in terms of Bell inequalities:
* Anders/Browne PRL 102, 050502 (2009)
* Hoban et al.,, New J. Phys. 13, 023014 (2011)

* ...but measurements are usually not space-like separated:
:: > quantum contextuality

* Raussendorf, PRA 88, 022322 (2013)




Quantum contextuality

* Context of an observable A = set of commuting observables measured together with A
* Non-contextuality hypothesis: outcomes of observables are context-independent
* Violated by quantum mechanics!

* Famously proved by Kochen and Specker (1967). Let’'s see a proof by Mermin (1990).

* Operators in each row and column commute;
Moreover, they are the product of the other two in same row/column

* EXCEPTION: third column:
o,llo,=-0o,llo lo o,

* Soit's impossible to assign +1 or -1 values to each observable in a context-independent
way. ‘QM is contextual.



Contextuality is necessary for magic state distillation

. e ~ Howard et al., Nature 310, 351 (2014)
* The Mermin square proof of quantum contextuality is state-independent — any state

violates the non-contextuality hypothesis.
* For Hilbert space dimension d>2, all contextuality proofs are state-dependent.
* So what's special about states revealing contextuality?



Contextuality is necessary for magic state distillation

. e ~ Howard et al., Nature 310, 351 (2014)
* The Mermin square proof of quantum contextuality is state-independent — any state

violates the non-contextuality hypothesis.
* For Hilbert space dimension d>2, all contextuality proofs are state-dependent.
* So what's special about states revealing contextuality?

* Howard et al. (2014) looked at that problem in the QC model of Clifford computer +

magic states: ( )
4)=—(|0)+e™|1) SX|— T
Dz V2 DO J V)

0) 3
5 Clifford

1)

from Howard et al., Nature 310, 351 (2014)

PSIM = simulable under
stabilizer measurements
PSTAB = stabilizer states

Q = general quantum states



Contextuality is necessary for magic state distillation

Howard et al., Nature 310, 351 (2014)

* The Mermin square proof of quantum contextuality is state-independent — any state

violates the non-contextuality hypothesis.

* For Hilbert space dimension d>2, all contextuality proofs are state-dependent.

* So what's special about states revealing contextuality?

* Howard et al. (2014) looked at that problem in the QC model of Clifford computer +

magic states:

= o 4)=—7=(10)+¢™*[1) ——{sx}— T|w)
0) £ J
5 Clifford

1)

* Result: any state out of PSIM violates a state-
dependent non-contextuality inequality, using stabilizer
measurements. States in PSIM are non-contextual.

‘ contextuality is necessary
for magic-state

computation

from Howard et al., Nature 310, 351 (2014)

PSIM = simulable under
stabilizer measurements
PSTAB = stabilizer states

Q = general quantum states



Application: model for quantum spacetime

* MBQC can serve as a discrete toy model for guantum spacetime:

quantum space-time

quantum substrate graph states

events measurements

principle establishing determinism requirement
global space-time for computations

structure [Raussendorf et 4.,

arxiv:1108.5774]

* Even closed timelike curves (= time travel) have analogues in MBQC!

[Dias da Silva, Kashefi, Galvao PRA 83, 012316
(2011)]



