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Introduction to measurement-based quantum computation

• Clifford circuits

• Pauli and Clifford groups

• Simulability of Clifford circuits

• Upgrading Clifford circuits to universal QC

• How MBQC works

• One-bit teleportation circuit

• Gate teleportation

• Concatenating MBQC gates

• Resources for MBQC: graph and cluster states

• Experimental implementations

• Resources for MBQC: contextuality and non-locality

Outline:
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Basics of the circuit model

• The most well-known model for quantum computation is the circuit model, obtained in 

analogy with classical circuits

3-qubit QFT

• wires = qubits (i.e. 2-level 

systems)

• little boxes = single-qubit gates

y = cos(q / 2) 0 +eif sin(q / 2) 1

1-bit Z teleportation
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- example: 
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Clifford circuits

• Pauli group: tensor products of

- example: 

Clifford

• Clifford group: unitaries that map Paulis into Paulis:

±I,±iI,X,Z

-iZ1 Ä X2 Ä I3

C

CPiC
+ = PjÛCPi = PjC

• Clifford group is generated by H,P,CNOT{ }

• Clifford circuits create large amounts of entanglement, are useful for 

teleportation, error correction…

…but are efficiently simulable.



Clifford circuits

• Pauli group: tensor products of

Clifford
• Clifford group: unitaries that map Paulis into Paulis:

±I,±iI,X,Z
C

CPiC
+ = PjÛCPi = PjC

• The key simulation idea is to use Heisenberg picture:

• initial state is eigenstate of Pauli operator

• each Clifford gate maps it into a new Pauli (efficient computation)

• keep track of the Pauli transformation until end, when measurement outcomes 

can be efficiently computed.

• Clifford circuits are not believed even to be able to do universal classical 

computation…



Example: Heisenberg simulation of Clifford circuit

• The key simulation idea is to use Heisenberg picture:

• initial state is eigenstate of Pauli operator

• each Clifford gate maps it into a new Pauli (efficient computation)

• keep track of the Pauli transformation until end, when measurement outcomes 

can be efficiently computed.



“Upgrading” a Clifford computer

• Clifford: , all that’s missing is T gate
H,P,Z,CNOT{ }
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“Upgrading” a Clifford computer

• Clifford: , all that’s missing is T gate

• There’s a work-around using:

• magic input states and

• adaptativity

H,P,Z,CNOT{ }

[Bravyi, Kitaev PRA 71, 022136 

(2005)] 
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“Upgrading” a Clifford computer

• Clifford: , all that’s missing is T gate

• There’s a work-around using:

• magic input states and

• adaptativity

H,P,Z,CNOT{ }

[Bravyi, Kitaev PRA 71, 022136 

(2005)] 

Clifford

Clifford
is universal for QC

SX

y

A =
1

2
0 + eip /4 1( ) T y

• Relevant for topological quantum computation with anyons, as for example Ising

model implements Clifford operations in a topologically protected way

H,P,Z,CNOT{ }



Measurement-based quantum computation

(MBQC)



• Class of QC models where the computation is driven by measurements on previously 

entangled states

MBQC: basic ingredients

• Origin: gate teleportation idea

• Most well-know variant is the one-way model (1WQC) 

• Brief introduction to MBQC based on McKague’s paper “Interactive proofs for BQP 

via self-tested graph states” arxiv:1309.5675 (2013)

[Raussendorf, Briegel PRL 86, 5188 (2001)] 

[Gottesman, Chuang, Nature 402, 390 (1999)]  

1- Initialization by CZ gates on     states; 

2- Sequence of single-qubit, adaptive 

measurements.

+
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• X measurement result controls Z gate

• Direct calculation shows this works

MBQC: step-by-step
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3 versions of the “1-bit Z teleportation” circuit:

y

y

y

y

y

y

• X measurement result controls Z gate

• Direct calculation shows this works

• Identity transforms CNOT into CZ

• Left H incorporated in input

• HZ = XH identity

So far: no computation, but:  ancilla initialized  in      state; CZ gate creates 

entanglement

+

+

MBQC: step-by-step



Now let’s teleport the unitary                             : 

y

y

y

U(q) y

U(q) y

U(q) y

U(q)= exp(iqZ / 2)

MBQC: step-by-step
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Now let’s teleport the unitary                             : 

• U commutes with CZ

• U followed by X-measurement = 

measurement in x-y plane of Bloch 

sphere:

y

y

U(q) y

U(q) y

U(q)= exp(iqZ / 2)

U+XU = R(q)= cos(q)X +sin(q)Y

q
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Now let’s teleport the unitary                             : 

• U commutes with CZ

• U followed by X-measurement = 

measurement in x-y plane of Bloch 

sphere:

y

y

y

U(q) y

U(q) y

U(q) y

U(q)= exp(iqZ / 2)

U+XU = R(q)= cos(q)X +sin(q)Y

q
Evolved state             is teleported, via entanglement and 

right choice of measurement basis of top qubit

(gate teleportation idea of Gottesman and Chuang)

U(q) y

MBQC: step-by-step



Now two different unitaries in sequence:

• Two gate teleportations, without final H gates, 

result in final state 
y

y

y

HU(q1) y

HU(q2 )HU(q1) y

MBQC: step-by-step



Now two different unitaries in sequence:

y

y
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• Two gate teleportations, without final H gates, 

result in final state 

HU(q2 )HU(q1) y

• Now commute X and CZ, which requires 

adding Z gate controlled by measurement 1
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because:
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Now two different unitaries in sequence:

y

y

y

• Two gate teleportations, without final H gates, 

result in final state 

HU(q2 )HU(q1) y

• Now commute X and CZ, which requires 

adding Z gate controlled by measurement 1

• Incorporate X correction into measurement 

angle of 2. When X is applied                    

because:
q2 ®-q2

XR(q)X = R(-q)

• By adapting measurement 2 according to 

outcome of 1, we can apply

HU(q2 )HU(q1) y
• Easy to extend to multiple single-qubit 

unitaries, and is universal set for 1 

qubit

{HU(q)}

Adaptivity allows for any single-qubit unitary to be implemented in the one-way model

CZ gates can be implemented similarly, propagation to beginning induces extra corrections

MBQC: step-by-step



• How do corrections affect future 

measurements? We can have both X and Z 

corrections:

Outcomes of previous measurements: 

• As , X corrections turn 

• As , Z corrections invert 

the output

q ®-qXR(q)X = R(-q)

ZR(q)Z =-R(q)

z, xÎ {-1,1}

q
+1

-1

MBQC: step-by-step
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• How do corrections affect future 

measurements? We can have both X and Z 

corrections:

Outcomes of previous measurements: 

• As , X corrections turn 

• As , Z corrections invert 

the output

q ®-qXR(q)X = R(-q)

ZR(q)Z =-R(q)

z, xÎ {-1,1}

q
+1

-1

+1
-1

+1

-1

X correction

Z correction

Classical control computer needs 

only store&update sum modulo 2 

of X and Z corrections of each qubit

This parity computer is quite 

simple, but together with the 

quantum resource yields universal 

QC

MBQC: step-by-step



Entanglement resources for MBQC

• Graph states: class of states obtainable by

1. Initialization of a set of qubits in       

states

2. CZ gates between neighboring vertices 

in a graph

+

• Examples: 

- No. 7 (5 qubits): sufficient for any single qubit

unitary

- No. 3 (4 qubits): sufficient for CNOT



Entanglement resources for MBQC

• Graph states: class of states obtainable by

1. Initialization of a set of qubits in       

states

2. CZ gates between neighboring vertices 

in a graph

+

• Examples: 

- No. 7 (5 qubits): sufficient for any single qubit

unitary

- No. 3 (4 qubits): sufficient for CNOT

• Are there families of graph states which are universal for QC?

• Alternative characterization of graph states:

- Unique state which is simultaneous eigenstate

(with eigenvalue 1) of set of operators

Ki = Xi Ä
j  neighbor of i

Z j
ì
í
î

ü
ý
þ



Entanglement resources for MBQC

• Graph states: different graphs may be local-unitary equivalent.

Example: GHZ states

• Local complementation: local Clifford 

unitaries that map a given graph state to 

all its Clifford LU equivalent graph states

- Simple interpretation in terms of graph 

change: choose vertex, complement 

subgraph of neighbors



Entanglement resources for MBQC

• Stabilizer 

measurements take 

graph states to graph 

states:



Entanglement resources for MBQC

from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", Varenna, 

Italy (2005)

• Example of universal graph: 2D square lattice (called cluster state)

• Above: MBQC implementation of 3-qubit discrete Fourier Transform

• “Unwanted” vertices deleted by Z-measurements; resulting corrections must be 

taken into account

3-qubit QFT



Entanglement resources for MBQC

• Some known universal resources for MBQC: 2D triangular, hexagonal, Kagome 

lattices

- These resources are "universal state preparators” = strong notion of universality

• Other resource states enable simulation of classical measurement statistics of any 

universal quantum computer = weaker notion of universality

- Some of these require a universal classical computer (instead of a parity 

computer) [Gross et al., PRA 76, 052315 (2007)]

• MBQC on some resource states is known to be simulable, e.g. on 1D chain

[Markov, Shi, SIAM J. Comput.  38, 963 (2008)]

• Universality also for ground state of 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) model

[Wei, Affleck, Raussendorf PRL 106, 070501 (2011)] 



MBQC - implementations

• Optical lattices – counter-propagating laser beams trap cold neutral atoms

• Challenge: single-site addressing

from: Weintenberg et al., Nature 471, 319 

(2011) 

• Proof-of-principle implementations 

using photons

• Topological error-correction using 

eight-photon cluster states

from: Yao et al., Nature 482, 489 (2012) 



MBQC - implementations

• Using one-way model to advantage: building large resource states from probabilistic 

operations; at once or on the go

• Schemes for adapting imperfect clusters for MBQC

from: Browne et al., New J. Phys. 10, 023010 (2008)

from: Briegel et al., Nat. Phys. 5 (1), 19 

(2009)

from: O’Brien, Science 318, 1467 

(2007) 



Universal QC with measurement-based quantum computation

• Measurement-based quantum computation (MBQC) relies only on

• entangling gates;

• adaptive single-qubit measurements.

• Teleportation-based gates – states are teleported (and transformed) step by step

from: O’Brien, Science 318, 1467 (2007) 

• MBQC is uniquely suited to photonic quantum computation:

• Photons fly away fast…

• …so they are stored for short times, measured, and information teleported to 

fresh photons.

• Approach being pursued by US company PsiQuantum (> 3 billion US$ valuation)



• MBQC using 3-photon GHZ-state sources on-chip: [Rudolph, arXiv:160708535]

• (2+1)-dimensional architecture

• probabilistic entangling gates sufficient, if above percolation threshold (essential 

use of error correction)

• adaptive single-qubit measurements (delay lines)

Universal QC with measurement-based quantum computation

• Key advantages: room-temperature chips (small cryo units for e.g. detectors), 

compatible with major chip foundry techniques, i.e. potentially scalable



ERC Advanced Grant QU-BOSS (“Quantum 

advantage via non-linear Boson Sampling”)

2020-2025
• PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)

• Partners: Istituto de Fotonica e Nanotecnologie

(IFN-CNR – Milan), INL

H2020 FETOPEN PHOQUSING (“Photonic 
Quantum Sampling Machine”)

2020-2024

• PI: Fabio Sciarrino (Univ. of Rome, La Sapienza)

• Partners: CNR (IT), CNRS (FR), Sorbonne Univ. 
(FR), Veriqloud (FR), QuiX BV (NL), INL

INL in 2 EC-funded projects on photonic quantum computation

• Development of complex linear and non-linear interferometers

• Theoretical characterization of photonic indistinguishability, resources such as contextuality and coherence

• Scalability of photonic QC, MBQC ideas

• Noisy, Intermediate-Scale Quantum (NISQ) computational applications: variational algorithms, 
randomness manipulation, cryptography, quantum chemistry



Application: blind quantum computation

• Classical/quantum separation in MBQC allow for implementation of novel protocols –

such as blind quantum computation

• Here, client has limited quantum capabilities, and uses a server to do computation for 

her.

• Blind = server doesn’t know what’s being computed.

Broadbent, Fitzsimons, Kashefi,  axiv:0807.4154 [quant-ph]



• Clearly, the correlations in the resource state.

• Analysis of MBQC protocols in terms of Bell inequalities:

• Anders/Browne PRL 102, 050502 (2009)

• Hoban et al., New J. Phys. 13, 023014 (2011)

• …but measurements are usually not space-like separated:

quantum contextuality

• Raussendorf, PRA 88, 022322 (2013)

Which resource gives MBQC its power?



• Context of an observable A = set of commuting observables measured together with A

• Non-contextuality hypothesis: outcomes of observables are context-independent

• Violated by quantum mechanics!

Quantum contextuality

• Famously proved by Kochen and Specker (1967). Let’s see a proof by Mermin (1990).

• Operators in each row and column commute;

Moreover, they are the product of the other two in same row/column

• EXCEPTION: third column:
s y Äs y =-s z Äs z ×s x Äs x

• So it’s impossible to assign +1 or -1 values to each observable in a context-independent 

way.   QM is contextual.



Contextuality is necessary for magic state distillation

Howard et al., Nature 310, 351 (2014)

• The Mermin square proof of quantum contextuality is state-independent – any state 

violates the non-contextuality hypothesis.

• For Hilbert space dimension d>2, all contextuality proofs are state-dependent.

• So what’s special about states revealing contextuality?
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PSTAB = stabilizer states

Q = general quantum states



Contextuality is necessary for magic state distillation

Howard et al., Nature 310, 351 (2014)

• The Mermin square proof of quantum contextuality is state-independent – any state 

violates the non-contextuality hypothesis.

• For Hilbert space dimension d>2, all contextuality proofs are state-dependent.

• So what’s special about states revealing contextuality?

• Howard et al. (2014) looked at that problem in the QC model of Clifford computer + 

magic states:

Clifford
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y

A =
1

2
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from Howard et al., Nature 310, 351 (2014)

PSIM = simulable under 

stabilizer measurements

PSTAB = stabilizer states

Q = general quantum states

• Result: any state out of PSIM violates a state-

dependent non-contextuality inequality, using stabilizer 

measurements. States in PSIM are non-contextual.

contextuality is necessary 

for magic-state 

computation



Application: model for quantum spacetime

• MBQC can serve as a discrete toy model for quantum spacetime:

quantum space-time MBQC

quantum substrate graph states

events measurements

principle establishing 

global space-time 

structure

determinism requirement 

for computations

• Even closed timelike curves (= time travel) have analogues in MBQC!

[Raussendorf et al., 

arxiv:1108.5774]

[Dias da Silva, Kashefi, Galvão PRA 83, 012316 

(2011)]


