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The problem: Eigenvalue estimation

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort
to the following technique:

e Take a controlled version of an operator Ur and prepare the target
qubit with an eigenvector;

e with the effect of pushing up (or kicking back) the associated
eigenvalue to the state of the control qubit as in
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The problem

The question

Can this technique be generalised to estimate the eigenvalues of an
arbitrary, n-qubit unitary operator U?

Let cU be a controlled version of a unitary operator U, and (|¢), e>™")
an eigenvector, eigenvalue pair. Then,
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The eigenvalue of U is encoded into the relative phase factor between the
basis states of the control qubit of cU, thus becoming a measurable
quantity.



The problem

The eigenvalue estimation problem

Given a circuit for an operator U, and an eigenvector, eigenvalue pair,
(Ib), e*™"), determine a good estimate for w.

The idea

Prepare a state
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and resort to QFT ! to obtain an estimate for w.




The strategy

To prepare this state note that

e |d) is also an eigenvector of U?, with eigenvalue (e2™")2 = 7w,

e in general, this applies to U9, with eigenvalue e>9™" for any
integer q.

Thus, it is enough to build a controlled-U gate, set the target qubit to
the eigenstate |$), and compute for the relevant j,

() - (257



The strategy

The envisaged circuit implements a sequence of controlled-U? gates each
controlled on the j-significant bit of
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The strategy

.. followed by QFT !
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The strategy
Observe that

e Applying this sequence of controlled- U? gates is equivalent to the
successive application of U a total of x times, as captured by the
following cU* gate:

U (I9)ld)) = (Ix)U*|d))

e On the other hand, the control qubits are prepared through
H®"0)®" as

<|O>\+@|l>> © <0>\2|1>> o (I0>$1>>

which can be accomplished by QFT again:
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The algorithm
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. Prepare a n-qubit register, identified as the control register, with
|0)®" and apply QFT to it.

. Apply cU* to the eigenstate |$) controlled on the state of the
control register.

. Apply QFT ! to the control register.

. Measure the control register to obtain a string of bits encoding the
integer x.

. Output the value w = % as an estimate for w.
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Going generic

What if |¢) is an arbitrary state?

By the spectral theorem one knows that the eigenvectors {|db1), |d2), -

(with eigenvalues e?™"i, for j = 1,2,---) of U form a basis for the
2"-dimensional vector space on which U acts. Thus, one may write

2"—1

) = Y ajldy)

j=0
The algorithm above maps, for each eigenvector of U,
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