

Problem Set 4 - Quantum Projects

Ana Neri March 19, 2021

The goal of the problem set 4 show the some projects currently being developed by the quantum computing community.

1.

Quirk is a quantum computer simulator that runs on the browser. It is a drag-and drop, that reacts, simulates, and animates in real time. More information in https://algassert.com/2016/05/22/quirk.html

Go to Quirk https://algassert.com/quirk

(a) The quantum Half Adder has the following truth table:

Input			Output				
q_{c_0}	q_{c_1}	q_t	q_{c_0}	$q_{c_1} = sum$	$q_t = carry$		
0	0	0	0	0	0		
0	1	0	0	1	0		
1	0	0	1	1	0		
1	1	0	1	0	1		

Implement the half adder in quirk. **Hint**: Start with carry.

(b) Implement the following circuit.

This circuit is a decomposition of a gate. Which gate is it?

Quipper is a scalable functional quantum programming language for quantum computing simulations. More information in https://www.mathstat.dal.ca/~selinger/quipper/

- (a) Install quipper
- (b) Test your installation by running the the functions plus_minus and print_plus-minus of https://arxiv.org/pdf/1304.5485.pdf

(c)	Use qu	ipper	to	generate	a	circuit	with	the	matrix	

/1	0	0	-0
0	1	0	0
0	0	0	1
$\sqrt{0}$	0	1	0/

(d) Print the circuit or its ASCII description.

3.

Pyzx is a tool to create, visualise, and rewrite quantum circuits. More information in: https://github.com/Quantomatic/pyzx https://www.youtube.com/watch?v=iC-KVdB8pf0

- (a) Install pyzx.
- (b) Load the quipper circuit https://github.com/Quantomatic/pyzx/ blob/master/circuits/Fast/mod5_4_before
- (c) Optimise your circuit.
 - Convert the initial circuit to the Clifford+T gate set with to_basic_gates() function
 - PyZX is based on the ZX-diagrams, in other words, you need to convert your circuit to a graph, use the function circuit_to_graph()
 - Use simplify.full_reduce to simplify the graph
 - Convert your graph into a circuit: zx.extract_circuit(g).to_basic_gates()
 - Make a final optimisation with optimize.full_optimize(your_circuit)
- (d) Analyse the difference between circuits.

Hint: Try it with **qiskit**.

2.

Fun with quantum

- Hello Quantum App https://helloquantum.mybluemix.net/
- Entanglion https://github.com/Entanglion/entanglion

Find more projects in https://qosf.org/project_list/.

4.