
Algebra of Quantum Operations
Problem Set 3

Ana Neri
March 12, 2021

The goal of the problem set 3 is to give intuition about quantum circuit
simulations in Haskell.

You can find the documentation page for the Data.Random Haskell pack-
age helpful to generate pseudo random Float.

Let’s recall some essential concepts

Qubit System
Consider the column vector representation of a multi-qubit quantum
state. The characterisation of a quantum state with n qubits is a vector
with a dimension of 2n. Each entry of the vector corresponds to the com-
plex coefficient of an associated orthonormal basis state. As an example,
admit a general two-qubit state |q0q1〉 = α|00〉 + β|01〉 + γ|10〉 + σ|11〉.
After measurement, the state will collapse to any of the basis states with
nonzero amplitude.

|qoq1〉 =


α
β
γ
ζ



|00〉
|01〉
|10〉
|11〉

measurement−−−−−−−−−→


0
1
0
0


|01〉

In the above example, the state collapsed into |01〉 - this event had a
β2 probability of occurrence. The column vector describing the mea-
sured state reflects that change (the kets to the right of each vector are
presented for better comprehension).

1

http://hackage.haskell.org/package/random-1.1/docs/System-Random.html


1. (a) Build a function amplitude acc to create a list of Float correspond-
ing to the cumulative squared values of the coefficients of an input
quantum state.

Example: Input: [[α],[β]] ; Output: [α2 , α2 + β2]

(b) Build a function meas acc, that takes a list output by amplitude acc

and a Float (which should be random, but we’ll handle that later),
and returns a string corresponding to the basis state associated with
the interval in which the Float falls relative to the accumulated list.

Example: Inputs: [0.5 , 1.0] 0.7 ; Output: [0.0 , 1.0]

Note: It may be easier to visualise the input list as the upper limit
of its interval, with the lower limit defined by the previous entry of
the list. The above list contains the interval [0, 0.5[ in its first entry,
and [0.5 , 1.0[ in the second one.

(c) Implement a function state to char that takes a measured quantum
state (i.e. the output of meas acc) and returns a string describing
the corresponding state ket. Example:

Input: [0.0 , 1.0, 0.0, 0.0] ; Output: "01"

(d) Verify that the previous functions work by implementing an IO func-
tion meas:

meas :: [[Complex Float]] -> IO [Char]

meas x = do

n <- randomIO :: IO Float

return state to char meas acc (amplitude acc x) n

This function takes any quantum state in the form [[Complex Float]]
and outputs a string describing the measured basis state. Apply the
function multiple times to the same superposition state (obtained
for example by applying the Hadamard gate to |0〉), and check the
results.

2. A single measurement of a quantum state does not give much information
other than the resulting state having a non-zero probability of occurring.
The study of quantum circuit measurements, either in a simulator or a
quantum device, typically requires a great number of executions (also
known as shots) and associated results, to accurately determine probabil-
ity amplitudes of basis states.

(a) Implement a function shots that takes a quantum state and an Int
n, and returns a list containing n measurement strings. Example
(had, ‘tensor‘ and q0 were defined in previous classes):

Inputs: (had ‘tensor‘ q0) 4 ; Output: [”0”, ”1”, ”0”, ”0”]

(b) For better visualisation of simulation results, implement a function
freqs that, like shots, takes a quantum state and an Int n. This func-
tion outputs measurement results as a tuple containing the measured
state, and the number of times it occurred. Example:
Inputs: (had ‘tensor‘ q0) 100 ; Output: [("0",54),("1",46)]

2


