

Algebra of Quantum Operations Problem Set 2

Ana Neri March 5, 2021

The goal of the problem set 2 is to recall the algebra of quantum operation by applying quantum operations in Haskell.

You can find the documentation page for the Data. Complex Haskell package helpful for operations regarding complex numbers.

Let's recall some essential concepts

Qubit

A single-qubit state $|\psi\rangle$ can be in a superposition of basis states $|0\rangle$ and $|1\rangle$:

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle \tag{1}$$

where α and β are complex coefficients with normalisation $|\alpha|^2 + |\beta|^2 = 1$. The bra-ket notation simplifies the description of quantum states in a complex vector space. In other words, $|0\rangle$ and $|1\rangle$ are shorthand for the following column vectors:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Matrix in Haskell:

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \rightarrow [[1,0],[0,-1]]$$

Vectors in Haskell:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow [[1],[0]]; \ |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow [[0],[1]]$$

1. The Hadamard gate,

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

can map the bases states $|0\rangle$ and $|1\rangle$ to the superposition basis $|+\rangle$ and $|-\rangle$, respectively.

Write both states ($|+\rangle$ and $|-\rangle$) as a superposition of basis states $|0\rangle$ and $|1\rangle$, as presented in equation 1.

2. The joint state of a system of qubits is described by the tensor product \otimes . For two (separable) qubit states $|q_0\rangle$ and $|q_1\rangle$, the joint state of the system may be written in the bra-ket notation with an implicit tensor product:

$$|q_0\rangle \otimes |q_1\rangle = |q_0\rangle |q_1\rangle = |q_0q_1\rangle$$

Using the tensor product function from Problem Set 1:

- (a) Write the vector representation of states $|00\rangle$, and $|11\rangle$.
- (b) Write the vector representation of the state $|010\rangle$.
- 3. In a complex vector space \mathbb{C}^n , the norm of a vector is expressed as:

$$||v|| := \sqrt{|v_1|^2 + \dots + |v_n|^2} = \sqrt{v_1 v_1 + \dots + v_n v_n}$$

- (a) Implement a function to determine the norm of a vector \mathbb{C}^n .
- (b) Implement a function "normalise" that takes a column vector v representing an n-qubit quantum state, and returns a state v/||v|| with normalised coefficients (i.e. such that the sum of the absolute squares over all coefficients is equal to 1).
- 4. Matrices representing quantum operations are always *unitary*. A general form of a unitary matrix representing single-qubit operations may be expressed as:

$$U(\theta, \phi, \lambda) = \begin{pmatrix} \cos(\theta/2) & -e^{i\lambda}\sin(\theta/2) \\ e^{i\phi}\sin(\theta/2) & e^{i\lambda+i\phi}\cos(\theta/2) \end{pmatrix}$$

with $0 \le \theta \le \pi$, $0 \le \phi < 2\pi$ and $0 \le \lambda < 2\pi$.

- (a) Implement a function u3, that takes (θ, ϕ, λ) .
- (b) Apply u3(0,pi,0) and u3(pi/2,0,pi). Do you know these gates by other names?
- 5. In the quantum circuit model of quantum computation, qubits are represented as horizontal lines, with a sequence of boxes over n-lines representing a sequence of n-qubit quantum operations being performed in left-to-right order. Using the functions gate and tensor:

(a) Write the state of the two-qubit system $|q_0q_1\rangle$:

$$|0\rangle$$
 H $|q_0\rangle$ $|q_1\rangle$

(b) Write the state of the two-qubit system $|q_0q_1\rangle$. Build a truth table (i.e. result over input states $|00\rangle$; $|01\rangle$; $|10\rangle$; $|11\rangle$) for the circuit below. Can you describe the operation being performed?

6. One cannot obtain the matrix representing the CNOT gate in a quantum circuit by applying the tensor products when the control and target qubits are in non-consecutive registers. In figure 1 are three example cases of CNOT matrices.

Figure 1: Different instances of CNOT gates in a quantum circuit. Entries sitting on the main diagonal are in blue, while entries outside of it are in yellow; grey space represents null entries.

Implement a function that takes an integer n representing the number of qubits over which the quantum gate is performed and returns a matrix in the form [[Complex Float]] characterising the operation.