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The goal of the problem set 2 is to recall the algebra of quantum operation
by applying quantum operations in Haskell.

You can find the documentation page for the Data.Complex Haskell pack-
age helpful for operations regarding complex numbers.

Let’s recall some essential concepts

Qubit
A single-qubit state |ψ〉 can be in a superposition of basis states |0〉 and
|1〉:

|ψ〉 = α|0〉+ β|1〉 (1)

where α and β are complex coefficients with normalisation |α|2+|β|2 = 1.
The bra-ket notation simplifies the description of quantum states in a
complex vector space. In other words, |0〉 and |1〉 are shorthand for the
following column vectors:

|0〉 =

(
1
0

)
|1〉 =

(
0
1

)
Matrix in Haskell:

Z =

(
1 0
0 −1

)
→ [[1,0],[0,-1]]

Vectors in Haskell:

|0〉 =

(
1
0

)
→ [[1],[0]]; |1〉 =

(
0
1

)
→ [[0],[1]]
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http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Complex.html


1. The Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
can map the bases states |0〉 and |1〉 to the superposition basis |+〉 and
|−〉, respectively.

Write both states (|+〉 and |−〉) as a superposition of basis states |0〉 and
|1〉, as presented in equation 1.

2. The joint state of a system of qubits is described by the tensor product ⊗.
For two (separable) qubit states |q0〉 and |q1〉, the joint state of the system
may be written in the bra-ket notation with an implicit tensor product:

|q0〉 ⊗ |q1〉 = |q0〉|q1〉 = |q0q1〉

Using the tensor product function from Problem Set 1:

(a) Write the vector representation of states |00〉, and |11〉.
(b) Write the vector representation of the state |010〉.

3. In a complex vector space Cn, the norm of a vector is expressed as:

||v|| :=
√
|v1|2 + ...+ |vn|2 =

√
v1v1 + ...+ vnvn

(a) Implement a function to determine the norm of a vector Cn.

(b) Implement a function “normalise”that takes a column vector v rep-
resenting an n-qubit quantum state, and returns a state v/||v|| with
normalised coefficients (i.e. such that the sum of the absolute squares
over all coefficients is equal to 1).

4. Matrices representing quantum operations are always unitary. A general
form of a unitary matrix representing single-qubit operations may be ex-
pressed as:

U(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) eiλ+iφcos(θ/2)

)
with 0 ≤ θ ≤ π, 0 ≤ φ < 2π and 0 ≤ λ < 2π.

(a) Implement a function u3, that takes (θ, φ, λ).

(b) Apply u3(0,pi,0) and u3(pi/2,0,pi). Do you know these gates by other
names?

5. In the quantum circuit model of quantum computation, qubits are rep-
resented as horizontal lines, with a sequence of boxes over n-lines rep-
resenting a sequence of n-qubit quantum operations being performed in
left-to-right order. Using the functions gate and tensor:
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(a) Write the state of the two-qubit system |q0q1〉:

|0〉 H • |q0〉

|0〉 |q1〉

(b) Write the state of the two-qubit system |q0q1〉. Build a truth table
(i.e. result over input states |00〉; |01〉; |10〉; |11〉) for the circuit
below. Can you describe the operation being performed?

|0〉 H • H |q0〉

|0〉 H H |q1〉

6. One cannot obtain the matrix representing the CNOT gate in a quantum
circuit by applying the tensor products when the control and target qubits
are in non-consecutive registers. In figure 1 are three example cases of
CNOT matrices.

Figure 1: Different instances of CNOT gates in a quantum circuit. Entries
sitting on the main diagonal are in blue, while entries outside of it are in yellow;
grey space represents null entries.

Implement a function that takes an integer n representing the number of
qubits over which the quantum gate is performed and returns a matrix in
the form [[Complex Float]] characterising the operation.

3


