Class 01

Recall Haskell

Ana Neri ana.neri@quantalab.uminho.pt

DIUM

February 26, 2021

Goals

» Recall Matrix Calculation.

» Recall Haskell basics;

Matrix Calculation [YM0S8]

+ Transpose, Conjugate and Adjoint
+ Matrix Multiplication

* Inner Product

» Tensor Product

Transpose, Conjugate and Adjoint

Transpose

Conjugate

Adjoint

ATlj k] = Alk.]

Transpose, Conjugate and Adjoint

* Transpose is IdEMPOTENT ...\ .utvt ettt et ettt et rtetee s (AT =A
« Transpose respects additionccooveiiiiiiiinnnn. (A+B)T=A"+8"
+ Transpose respects scalar multiplication ...t (c- A)T =c-A
+ conjugate IS IdempPOteNtottt A=A
+ Conjugate respects additionccooviiiiiiii i A+B=A+B
+ Conjugate respects scalar multiplicationcoooeeeinn.... C-A=C-A
¢ AdJOINt IS IdEMPOTENT ...\ttt ettt (ADT =4
+ Adjoint respects additionooiiiiiiiiii (A+B)f =4t +B

Adjoint relates to scalar multiplicationcoooviiininnn. (c-A)f=¢-A

Matrix Multiplication

GivenA € C"*"and B € C"*P,A- B € C™*P s defined as :

n—1

(A-B)[j; K = D (Alj, h] x Blh, K])

h=0

[a Z}[e f}:{(axe—kbxg) (a X f+b x h)

g h (cxe+dxg) (cxf+dxh)

Matrix Multiplication

+ Matrix multiplication is associativec.oovevenn.. (A-B)-C=A-(B-C)
+ Matrix multiplication has /[, asaunitcooociiiiiiiii. b -A=A=A-1,
+ Matrix multiplication distributes over addition A-(B+C)=(A-B)+(A-0)
+ Matrix multiplication respects scalar multiplicationc- (A-B) = (c-A)-B=A-(c-B)
+ Matrix multiplication relates to the transpose (A-B) =B"-AT
+ Matrix multiplication respects the conjugateo.ooounn. A-B=A-B
+ Matrix multiplication relates to the adjoint (A-B)t =Bt - Af

commutativity is not a property of matrix multiplication.

Tensor Product

A {Go,o 00,1} and B — [bo,o b0,1]

aio 01,1 bio b1
boo bo1 bo,o bo,1
0,0 |, b a1 |, b
B 1,0 b1 1,0 bii|| _
AR B= =
bo,o bo,1 bo,o bo,1
ai,0

, a1

bio b1 bio b1
ap,0 X bo,o 00,0 X bo,1 0o,1 X boo @01 X bo1
ao,0 X b1o g0 X b1 ag1 X bio 0ao1 X b1
ai,0 X boo a1,0 Xbo1 a11 X b1 01,1 X bo
aj0 X bro 010X b1y a1 Xbio 011 X by

Haskell [AM15]

+ Solutions of problem set 1

1

Write an Haskell function that:
(a) Calculates the perimeter of a circle

v ' How to install:
given fts rad/ys.) http://docs.haskellstack.
perimeter_circle :: Floatinga=>a->a org/en/stable/README/

perimeter_circle r = 2*pi*r

(b) Calculates the area of a circle given

its radius.
area_circle :: Floatinga=>a->a
area_circle r = pi*(r**2)

http://docs.haskellstack.org/en/stable/README/
http://docs.haskellstack.org/en/stable/README/

2

Write an Haskell function to calculate the

factorial ofa number n. Remember that The definition of a Recursive function
by convention, fac(0) = 1. is made in terms of itself by a
factorial_:: Int -> Int self-referential expression.

factorial_0=1
factorial_ x = x * factorial_ (x-1)

3

Prime numbers can be very useful for many
purposes such as cryptography.

(a) Write a function that returns all numbers from
2 to a given number n.

all_numbers_up_to_n :: Int ->[Int]
all_numbers_up_to_n n =[2..n]

(b) Implement a function to eliminate the multiples
of a number n from a list.

elim_numbers :: Int -> [Int] -> [Int]
elim_numbersn|=[i | i<-1, modin/=0]

Anonymous function is a lambda
abstractions and may look like x ->
\x+2.

List comprehension: generate a list
from another list or lists.

Simple example:

[x72 | x <= [1..10]]

x~2 is the output function.

| splits output and input

x <= [1..10]] input function

In exercise 3.b. there is a predicate.

3

(c) Admit the Erastothenes sieving algorithm: starting by a list of numbers from 2..n, the
algorithm iteratively takes out the multiples of the prime elements. In each iteration the
prime element to use always lies in the next position of the element used in the previous
iteration.

Initial list : [2,3,4,5,6,7,8,9,10]

Iteration 1:[2,3,5,7,9]//take out the multiples of 2
Iteration 2:[2,3,5,7]// take out the multiples of 3
Iteration 3:[2,3,5,7]// take out the multiples of 5

Iteration n: [2, 3, 5, 7] // in the end only the primes remain

3

Implement a function that returns all primes up to a number n.
auxprime :: [Int] -> [Int]

auxprime [1=1[]

auxprime (x:xs) = x : (auxprime (elim_numbers x xs))
prime_list :: Int -> [Int]

prime_list n = list_prime (all_numbers_upto_n n)

3

(d) Implement a function that tests the primality of a given number n.

is_prime :: Int -> Bool

is_prime n = elem n (prime_list n)

(e) Implement a function to factorize a number into prime factors, based on the previous
functions. Example: 15 = 3 x 5.

factorize :: Int -> [Int]

factorize n =[x | x <- (prime_list n), (mod n x == 0)]

4

Matrices are an invaluable tool in quantum information. Here we will try to implement
some of the primitive operations involving matrices. Consider that the definition for
matrices in Haskell is given by lists of lists [[Int]]. For instance, the representation of the

Pauli X matrix reads as follows: o, = [(1) (1)} — [[0, 1], [1, O]] Implement functions to:

(a) Calculate the transpose of a matrix A

transp :: [[a]] -> [[al]

transp [1=1]

transp ([J:) = [

transp x = (map head x : transp(map tail x))

map function applies a function to each item of a list and return the resulting list.

4

transp [[1,2],[3,41]

< (map head [[1,2],[3,4]]) : (transp (map tail [[21,[41]))
< [1,3]: (transp [[2],[4])

< [1,3]: (map head [[2],[4]]) : (transp (map tail [[2],[4]]))
< [1,3]: [2,4] : (transp [[1,0])

< [1,3]: [2,4][] because transp ([I:_) =[]

< [[1,31.[2.4]1]

4

(b) Multiply matrices A - B

mult :: Num a => [[a]] -> [[a]] -> [[a]]

mult m n = [[sum $ zipWith (*) mr nc | nc <- (transp n)] | mr <- m]

See [Bas18].

Recall the matrix multiplication definition of slide 6.

Let (MN); be the element of M - N located at the i row and j column. It can be
calculated by (MN); = M; - NJ, where A; is the i*” row of matrix M and N] the / column
of matrix N.

We only need to work with two vectors MR (row from matrix M) and NC (column of
matrix N). IF MR and NC have lenght n then MR - NC = ZZ=1 MRy, - NCp,

zipWith applies the (+) to each elements of the input lists that have the same index.
sum computes a sum of all elements in the list.

4

(c) Calculate the tensor product A @ B
tensor_p :: Num a => [[a]] -> [[a]] -> [[a]]

tensor pxy=[[a*b |a<-rx,b<-ry]|rx<-xry<-y]

Recall slide 8.

Let x = [[1,2],[3,4]]1 and y = [[1,01,[0,2]].

ForX® Yy 1:

rx=[1,2]andry=[1,0]=>a=1andb=1=>theiteminX® Y, ;1 =1 x1=1

If it helps, you can run the following variation in your prompt to understand the
function behaviour better.

> let t xy = [[(rx,ry,a,b,a*b) | a<-rx,b<-ry 1| rx<-x,ry<-y]

4

(d) Calculate projection matrices A @ AT
projection :: Num a => [[a]] -> [[a]] -> [[a]]
projection x = tensor_p x $ transp x

Recall slide 4.

5)

An n-qubit quantum state can be represented
by a column vector with 2" entries.
Implement a function that takes a vector
representing a 2-qubit state and applies a
CNOT operation to it. Note that a CNOT can
be represented by a 4 x 4 matrix:

CNOT =

o oo
oS O = O

0 0
0 0
0 1
10

gate :: Num a => [[a]] -> [[a]] -> [[a]]
gategp=multgp

References

B

B

Christopher Allen and Julie Moronuki.
Haskell Programming From First Principles.
Gumroad, 2015.

Martijn Bastiaan.

Matrix multiplication with Clash.

Link here, Jul 2018.

[Online; accessed 25. Feb. 2021].

Noson S. Yanofsky and Mirco A. Mannucci.
Quantum Computing for Computer Scientists.
Cambridge University Press, Cambridge, England, UK, Aug 2008.

https://clash-lang.org/blog/0001-matrix-multiplication

	Goals
	Mathematical framework
	Haskell
	References

