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SL vs UL vs RL
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Reinforcement Learning

Agent-Environment Paradigm (A-E Paradigm): Two party system.
Learning by interaction.

Agent: ⇡ : S 7! A

Environment: Characterized by a Markov Decision Process (MDP)
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Markov Decision Process

Definition

A Markov Decision process is a tuple hS ,A,P ,R , �i

S - Finite set of states

A - Finite set of actions

P - state transition probability matrix

R - Reward function for being in state s

� 2 [0, 1) - Discount factor

(a) Stochastic MDP (b) Deterministic MDP
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MDP’s

RL AGENTS GOAL: For a given number of transitions in the
environment (horizon), the goal of the agent is to find the optimal policy
⇡⇤, that maximizes the expected discounted cumulative reward

R0 + �R1 + �2R2 + · · ·+ �h�1Rh�1 =
h�1X

t=0

�tRt

Convergence

Immediate VS Delayed Rewards
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More on MDP’s and RL

MDP: Fully observable (MDP) VS Partially Observable (POMDP)

Solving the MDP for the optimal policy ⇡⇤:

Model-based RL:

The agent knows the dynamics of the environment (P,R)

Dynamic Programming - Value Iteration / Policy Iteration

Model-Free RL:

Unknown dynamics - Resort to Sampling techniques

Exploration-Exploitation dillema

MC Learning , TD-Learning (SARSA, Q-Learning) Sutton
(2018)
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A complicated problem

Problem:

Solve the optimal policy problem for the entire state-space
of the MDP.

Real world problems - Large State-Space MDPs

Planning may be intractable
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A rather simple solution

Approach:

Perform planning on states that we actually care about

Not solving for the optimal state action mapping for the entire
state space, but only for the most visited states.

This will be the approach taken in the quantum setting as well
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Sparse Sampling

From an initial state, we can sample enough trajectories that enables
us to decide what action to take at that particular state
Sample every possible action m times for every m|A| generated states,
for a given horizon
Could be viewed as the agent to be thinking

Figure: Look-ahead tree from Kearns et al. (1999)

Sequeira, A. (DI/UM) Quantum-enhanced Reinforcement Learning May 14, 2021 11 / 36

=
-

µri$
⇐

HADhe$1

A →
effective
horizon

i.
9¥¥=



Sparse Sampling Complexity

✏-approximation of the optimal action

O

 ✓
|A|H

✏

◆Hlog(H✏ )
!

(1)

 Complexity exponential in the horizon

� Complexity independent of the # of states of the MDP
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Quantum Agent-Environment Paradigm

We need a notion of a quantum Agent/Environment

Agent can evolve in parallel in the environment, performing actions in
superposition

How to collapse the superposition into something meaningful?
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Quantum Agent-Environment Paradigm (2)

qAgent: |si 7! |ai

qEnvironment: Oraculization of task environments Dunjko et al.
(2016)

T̂ ,R̂ will be dependent on the nature of the environment itself
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State Transition Dynamics

States and actions are basis encoded

State transition operator - T

T : |si ⌦ |ai ⌦ |0i⌦ns 7! |si ⌦ |ai ⌦
P

s02S
p
Pa

ss0 |s
0
i

The action register is the uniform superposition over the set of
admissible actions for a given state, As .

|ai =
1p
|As |

X

i2|As |

|ai i (2)
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Reward Function

Rewards are angle encoded

Reward operator - R

R : |si ⌦ |ri 7! |si ⌦ e ir �̂y |ri

Why angle encoding?
Agents goal is to maximize the expected cumulative reward

Iteratively tweaking the angle, we can sum rewards essentially for free.

Ry (r1)Ry (r0)|ri = Ry (r1)Ry (r0)|0i = cos(r0 + r1)|0i+ sin(r0 + r1)|1i

R =
H�1X

t=0

�tRt 
⇡

2
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Maximum Expected Cumulative Reward

The oracularized environment, O, will be the product of the State
transition and reward operators acting on the respective transition step
quantum registers

O =
H�1Y

i=0

RiTi (3)

O| 0i =
X

s⇤

q
Pa
s0s1

Pa
s1s2

. . .Pa
sH�1sH

.R| i

Interacting with the quantum environment for h steps, creates
superpositions with approximate expected utility of each action
encoded into the amplitude

Superposition term with highest amplitude corresponds to the optimal
action to take
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Quantum Sparse Sampling

Applying the oracles for an horizon h is the same as computing a
lookahead tree with depth h

Small/Null rewarded sequence of actions maximize cosine term of
reward 7! Measuring state does not guarantee optimal action
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Amplitude Amplification

Let P = Pa
s0s1

Pa
s1s2

. . .Pa
sH�1sH

Amplify amplitude of good states 7! |ri = |1i

| i =
p

Pcos(R)|0i+
p

Psin(R)|1i

�̂z | i =
p

Pcos(R)|0i �
p

Psin(R)|1i = | 0
i

For j iterations of the Grover Operator, G

G
j
| i = [(2| ih |� 1)�̂z ]

j
| i

=
p

Pcos((2j + 1)R)|0i+
p

Psin((2j + 1)R)|1i

How many iterations?
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Exponential Search

Problem:

Initial distribution is non-uniform

Unknown number of superposition terms

Unknown number of marked states

Measuring a good state, does not guarantee optimal action

Solution:

Perform Exponential Search Boyer et al. (1998)

Exponentially increase the number of Grover Iterations
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Exponential Search

Sampling the state, we achieve a distribution from which we can
extract the optimal action to take

How many samples ?
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Complexity Analysis

Complexity will be dictated by two separate components:

Number of samples, S

Runtime per sample , C

Complexity

For any initial state s 2 S , the algorithm computes an ✏-approximation of
the optimal action with complexity:

S⇥ C
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Runtime per sample

The complexity of each execution will be dominated by the runtime of the
exponential search algorithm.

O

 r
N

n

!

Worst-case scenario: Single marked state, n = 1

Search space will be dependent on the dynamics of the environment,
k and the branching factor |A|.
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Runtime per sample (2)

Figure: Deterministic MDP Figure: Stochastic MDP

C = O

 r
N

n

!
= O

✓q
k |A|h

◆
(4)

Sequeira, A. (DI/UM) Quantum-enhanced Reinforcement Learning May 14, 2021 27 / 36

2h →011AM ) (k.MY



Number of samples

We can estimate the number of samples needed to estimate the probability
of measuring a single qubit basis states {|0i, |1i}, using the Wilson
Interval Schuld et al. (2018):

S = O

✓
�2

8✏2
(
p
16✏2 + 1 + 1)

◆

For an action register with log |A| qubits:

S = O

✓
�2

8✏2
log |A|(

p
16✏2 + 1 + 1)

◆

where � is the sample confidence interval and ✏ is the prediction
associated error.
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Complexity Analysis

Complexity

For any initial state s 2 S , the algorithm computes an ✏-approximation of
the optimal action with complexity:

O

✓
�2

8✏2
log |A|(

p
16✏2 + 1 + 1)

q
k |A|h

◆

Without further assumptions on the environment dynamics, we cannot say
anything about k
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Complexity Separation

Varying k exponentially with the horizon. Binary action MDP with
� = 99% and ✏ = 1%
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Non-uniform tree expansion

Figure: Deterministic MDP

Exploit information to reduce search space

Informed tree search
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Quantum Variational RL

Variational Circuits as Policy generators

Hybrid algorithms - Classical optimization

Supervised Learning with Quantum Computers - Schuld and
Petruccione
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