
Lecture 1
Background: Discrete mathematical structures: Sets
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Summary
(1) Sets, functions, relations.
(2) Isomorphism and cardinality.

Sets, relations, functions

(recall your HASKELL experience)

• Function f : A −→ B. Composition.

• Notation AB to represent the space of functions from A to B.

• Injective, surjective and bijective functions.

• Set. Cardinality. Powerset (P(A) or 2A).

• Binary relations; 2A×B ∼= 2A
B

.

• Equivalence relations. Partition. Quotient set as a partition.

Finite and infinite sets

• equicardinality vs isomorphism.

• finite vs infinite.

• countable vs uncountable:
A set A is countable iff there is an injective function f : A −→ N.
It is infinite countable if f is a bijection.

Ranking cardinality

|A| ≤ |B| iff there is an injection f : A −→ B

Relation ≤ above is a total order. Note that proving antisymmetry (i.e. the Cantor-Bernstein-
Schroeder theorem) and totality (which requires the axiom of choice) is extremely hard.

Some applications:
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Theorem

N and Z have the same cardinal

Proof (hint).
Consider h : Z −→ N defined as follows and show it is a bijection

h(x) =

{
2x ⇐= x ≥ 0
−2x+ 1 ⇐= otherwise

�

Theorem

N and N× N have the same cardinal

Look for a bijection between N and N× N. Let’s see some (of several) possibilities:

Proof (1).
Enumerate all pairs of numbers which sum 0, 1, 2, · · · :

(0,0)
(0,1) (1,0)
(0,2) (1,1) (2,0)
(0,3) (1,2) (2,1) (3,0) · · ·

...

For every sum n there are only finitely many, actually n+ 1 pais (i, j) that sum n. I.e. for every
number n, one gets all the pairs which sum n. On the other hand, since every pair of numbers
(i, j) has a finite sum it will appear somewhere on this list. This defines a bijection

(0, 0) 7→ 0

(0, 1) 7→ 1

(1, 0) 7→ 2

(0, 2) 7→ 3

(1, 1) 7→ 4

· · · · · ·

�

Proof (2).

Consider the following correspondence:

n 7→ (i, j)

such that n = 2i + j (i.e. basically factoring number n in its odd and even parts). Clearly the
pair (i, j) is unique, thus establishing a bijection

f : N −→ N× Nodd

2



Remains to prove that N ∼= Nodd.

�

Theorem

The union of a finite number of countably infinite sets is countably infinite.

Proof (hint).

X x0

��

x1

��

x3

��

· · ·

Y y0

��

y1

��

y3

��

· · ·

Z z0

GG

z1

GG

z3

GG

· · ·

�

Theorem

|N| < |R|

Proof.
To show that |N| ≤ |R| is trivial: function h(n) = n is injective.

The difficult part is to prove that N 6= R. Let us prove an even stronger statement: that there is
no surjection from N to [0, 1[. Consider an arbitrary function h : N −→ [0, 1[ with which one
may enumerate an infinite sequence of real numbers

r0, r1, r2, · · ·

making ri = h(i).

To show that h in not surjective, we have to find a real x such that rn 6= x for all n ∈ N. Let us
build x as an infinite dizime

0.x[0]x[1]x[2] · · ·

such that

x[i] =

{
1 ⇐ ri[i] = 0

0 ⇐ otherwise

Observe that any real h(n) differs from number x exactly in position n, and conclude that x does
not belong to the image of h.

�
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Theorem

2N is uncountable.

Proof.
If this is not the case, and 2N is countably infinite, there is an enumeration of sets such that

2N = {R1, R2, · · ·}

LetD = {n ∈ N | n 6∈ Rn}. SetD is a set of natural numbers and thus should appear somewhere
in the enumeration R1, R2, · · · . Suppose D = Rj for some value j. Does j ∈ Rj? If yes, by
definition of D, j 6∈ D, which contradicts D = Rj. If, alternatively, j 6∈ Rj then j ∈ D which is
again a contradiction.

�

Exercise (Cantor Theorem)

Generalise the previous proof to show that, for any set X, |X| < |2X|.

Proof (Cantor Theorem).

Function
η : x −→ {x}

is trivially injective. However there is no surjection h : X −→ 2X.

To argue by contradiction, suppose such a function h exists and consider a set

W = {x ∈ X | x /∈ h(x)}

If h is indeed surjective it must exist an elementw ∈ X such that h(w) =W andw may or may
not belong to h(w).
These two cases are as follows as both lead to a contradiction:

• w ∈ h(w) but then w /∈W,

• w /∈ h(w) but then w ∈W

which invalidates our assumption that h is a surjection.

�
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Remark (problems and algorithms). This theorem sheds light on the limits of computability:
there are more problems that we might want to solve than there are programs to solve them, even
though both are infinite.

To see this, restrict your attention to one type of problem: deciding whether a string has some
property (e.g. having even length, being a palindrome, or a legal Haskell program). A property
can be identified with the set of strings that happen to share it. Clearly, the number of possible
programs is no bigger than the number of strings, while the number of sets of strings is strictly
greater.

This shows the existence of unsolvable problems, i.e. problems that can be formulated but not
possibly solved.

Theorem: the pigeonhole principle

Let m objects be distributed into n containers. If m > n, then some container contains at least
two objects

Proof.
By contrapositive: let us show that if every container contains at most one object, thenm ≤ n.

If ci is the number of objects in container i, then

m =

n∑
i=1

ci

but, every container contains at most one object, we get

m =

n∑
i=1

ci ≤
n∑
i=1

1 = n

�

Applications: Given a large enough number of objects with a bounded number of properties,
eventually at least two of them will share a property.

Ex. 1
Suppose that every point in the real plane is coloured either red or blue. Then for any distance
d > 0, there are two points exactly distance d from one another that are the same color.

Ex. 2
Similarly, there are at least 2 Portuguese citizens with exactly the same number of individual hair
in their heeads.

Ex. 3
For any natural number n, there is a nonzero multiple of n whose digits are all 0s and 1s.
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Remark (non constructive proofs).

The proofs applying the pigeonhole proofs are non-constructive, i.e. although they prove the
existence of something, they fail to provide an explicit example that proves the theorem. Con-
structive proofs are the ones more suitable for Computer Science (why?).

This may be illustrated with two proofs of the following result:

Theorem: There exist irrational numbers x and y for which xy is rational

Proof (non-constructive).
Let x =

√
2

√
2

and y =
√
2. Number y is irrational, but we do not know whether x is rational or

irrational. Thus,

• If x is irrational, then we have an irrational number to an irrational power that is rational:

xy = (
√
2

√
2
)
√
2 =

√
2
(
√
2×
√
2)

=
√
2
2
= 2

• If x is rational, then
yy = x

is rational. Either way, we conclude that there is an example of a power of irrational
numbers tthat is rational.

�
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