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The problem

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort
to the following technique:

e Take a controlled version of an operator Ur and prepare the target
qubit with an eigenvector;

e with the effect of pushing up (or kicking back) the associated
eigenvalue to the state of the control qubit as in

Ur (a0/0)+a|1)) <°>}2'1>> = (1) al0) + (~1) V1)) <|0>—|1>>
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The problem

The question

Can this technique be generalised to estimate the eigenvalues of an
arbitrary, n-qubit unitary operator U?

Let cU be a controlled version of a unitary operator U, and (|¢), e>™")
an eigenvector, eigenvalue pair. Then,

cUl0)lb) = 10)Id)
cUl)p) = UI9) = [1)e*™Id) = ™ 1)lp)

al0) + 6l1) T |0) + 2™ 3|1)
) U | )
| I

The eigenvalue of U is encoded into the relative phase factor between the
basis states of the control qubit of cU, thus becoming a measurable
quantity.
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The problem

The eigenvalue estimation problem

Given a circuit for an operator U, and an eigenvector, eigenvalue pair,
(Ib), e*™"), determine a good estimate for w.

The idea

Prepare a state

2"—1
1

27iwy _
— ) Ty) =
2 y

=0

0) + 2" W) 0) + 2" W)|1) 0) + 2|1
() () e ()

and resort to QFT ! to obtain an estimate for w.




Eigenvalue estimation

The strategy

To prepare this state note that

e |d) is also an eigenvector of U?, with eigenvalue (e2™")2 = 7w,

e in general, this applies to U9, with eigenvalue e>9™" for any
integer q.

Thus, it is enough to build a controlled-U gate, set the target qubit to
the eigenstate |$), and compute for the relevant j,

o (2)0) - (2257
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The strategy

The envisaged circuit implements a sequence of controlled- U? gates each
controlled on the j-significant bit of

x = 2" x 144+ 2x + Xxo

n—1
j0) e Ve 1)

[0)-+11)
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[0)-+11) [0} +e2ri 1)
V2 f V2

it Je v Bw




Eigenvalue estimation Order finding Shor's algorithm Annex: Continued Fractions

The strategy

... followed by QFT !

[0)+[1)

s —
[0)+[1)
v L2 —
' : QFT™ )

L0}-+11) :
= o

[0)+[1) e
: !

|w> TUZ”_I:UWL_Z* .o : U2 U 7 |¢>
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The strategy
Observe that

e Applying this sequence of controlled-U? gates is equivalent to the
successive application of U a total of x times, as captured by the
following cU* gate:

U (I9)ld)) = (Ix)U*|d))

e On the other hand, the control qubits are prepared through
H®"0)®" as

<|0>\+@|1>> © <0>\2|1>> o (I0>$1>>

which can be accomplished by QFT again:

2"—1

H®|0)® Z Ix) = QFT|0)®"
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The algorithm

|0)*"

QFT QFT 1<

¥) 107 ;)

1. Prepare a n-qubit register, identified as the control register, with
|0)®" and apply QFT to it.

2. Apply cU~ to the eigenstate |b) controlled on the state of the
control register.

3. Apply QFT ! to the control register.

4. Measure the control register to obtain a string of bits encoding the
integer x.

5. Output the value w = £ as an estimate for w.

on



Eigenvalue estimation Order finding Shor's algorithm Annex: Continued Fractions
Going generic

What if |¢) is an arbitrary state?

By the spectral theorem one knows that the eigenvectors {|db1), [d2), - -}
(with eigenvalues e?™"i, for j = 1,2,---) of U form a basis for the
2"-dimensional vector space on which U acts. Thus, one may write

2"—1

) = Y ajldy)

j=0
The algorithm above maps, for each eigenvector of U,
0)%lby) = 1W;)ldy)
which, by linearity, entails
2"1

b) = > oglwg)ly)

Jj=0
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The order-finding problem

Let’s discuss now an application of the eigenvalue estimation to a problem
which is central to the landmark Shor’s algorithm for prime factorization.

The order-finding problem
Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order
of a modulo n.
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Preliminaries

Order of an element in a group

The order of an element a in a group G = (A, 0, e, 1) is the least
positive integer r such that a" = e, if any such r exists

Examples

e Every element of the permutation group of degree 4
(bijections onto {1,2, 3,4}, -, id, ~1)

has order 4. For example, consider element
(1)2)3)4): 11— 2‘2 — 3,3 — 4‘4 — 1}

(1,2,3,4)! = (1,2,3,4) # id
(1,2,3,4)% = (1,3)(2,4) # id
(1,2,3,4) = (1,4,3,2) # id
(1,2,3,4)* = id
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Preliminaries

e InZ=(Z,x,1, 1) every element but 0 has order co.

e Consider the group of integers modulo n,
Zp = ({0»132)"' y N — 1}) Xm]-) 71)

Note then when defining the order of a as the smallest positive
integer r such that a" = 1, the exponentiation is taken modulo n,
and therefore the equality can be written as

a"=1(modn)

where x = y (mod n) abbreviates *~* = 0 which is the equality in
Zn
So, e.g. the order of 4 in Zs is 2 because

4' = 4(mod5)
4> = 1(mod5)
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The problem

Note that any integer a st gcd(a, n) = 1 the number 1 will appear
somewhere in the sequence

rem (a, n),rem (a2, n),rem (a,n), - - -

after what the sequence repeats itself in a periodic way.

The order-finding problem

Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order
of a modulo n, i.e. the smallest positive integer r such that

a" =1 (modn)
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Strategy: The eigenvalue approach

The order-finding problem is basically an application of eigenvalue
estimation for operator
Us(lq)) = Irem(qa,n)) for0<gq<n

Clearly, U, is unitary: being a coprime with n, a has an inverse modulo n
and, thus, is reversible.

Note that U, can be extended reversibly to an implementation in a
circuit over m qubits (2™ > n) making

Us(lq)) = Irem(qga,n)) for0<qg<n
Us(lg)) = lg) forg>n

In any case, let us focus on the action of U, restricted to the state space
spanned by {|0),1),--- ,|n—1)}.
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Strategy: The eigenvalue approach

Since a" = 1(mod n),
Ui(lg)) = Irem(ga",n)) = lq)
i.e. U, is the rth root of the identity operator /.

It can be shown that the eigenvalues A of suckh an operator satisfy
A" =1, which means they take the form e+, for some integer k.

Thus, suppose one is able to prepare the state

r—1

1 P
i) = ﬁze 27129 rem (a9, n))

q=0
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Strategy: The eigenvalue approach

Then, observing for the last step that
€2 rem (291, n)) = 2™ % rem (2°, n))

compute

r—1
1 ,
Ua|uk> = ﬁzeizméqua”em (aqan)>
q=0
r—1
_ 1 Ze‘zm +9lrem (2971, n))
V=

1 r—1
— e 2mit \[Z e 2 ) e (591, n))

e—2m7 |Uk>



Eigenvalue estimation Order finding Shor's algorithm Annex: Continued Fractions

Strategy: The eigenvalue approach

. concluding that

. . . ok
lug) is an eigenstate for U, with eigenvalue e 2~

Thus, for any value 0 < k < r — 1, the eigenvalue estimation algorithm
. . . e k .
will compute an approximation k/r to ;- mapping

1)) — 1k/r) ui)

However ...
Without knowing r we do not know how to prepare |ug).

Fortunately, it is not necessary!
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Strategy: The eigenvalue approach

Instead of preparing an eigenstate corresponding to an eigenvalue e2mit
for a randomly selected k € {0,1,---,r— 1}, it suffices to prepare a
uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of
these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a

random eigenvalue.

Question
How to prepare such a superposition without knowing r?
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Strategy: The eigenvalue approach

The uniform superposition is

r—1 r—1 r—1
1 1 1 K
— Y |u) = =) —=) e ™ rem(a%n))
PN RS |
Note that
[rem (a9 n)) = |1) iff rem(q,n) =0

Thus, the amplitude of |1) in the above state is the sum over the terms
for which ¢ = 0 (because r — 1 < n)

— _omik 1
R R

k=
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Strategy: The eigenvalue approach

If the amplitude of |1) is 1, this means that the amplitudes of all other
basis states are 0, yielding

% ri lug) = 1)

Thus, the eigenvalue estimation algorithm maps

r—1 r—1 r—1
o)1) = I0) (\;Zm) — 23 Ol = 3l
k=0 k=0 k=0
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Strategy: The eigenvalue approach

Thus, after executing the eigenvalue estimation algorithm the first
register contains a uniform superposition of states |k/r) for
ke{0,1,---,r—1}

X

Measuring this register yields an integer x st 5; is an estimate of é for
some k selected uniformly at random.

Finally, to estimate r one resorts to the following result in number theory:
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Estimating r

Theorem: Let r be a positive integer, and take integers ki to ky selected
independently and uniformly at random from {0,1,--- ,r —1}. Let
c1, Co, 11, » be integers st ged(rl, cl) = ged(r2,c2) =1 and

ky C1 ko C2

— = — and — = =

r n r r»
Then, r = lcm(ry, r2) with probability at least T%.

Thus

e To obtain % from k/r, i.e. the nearest fraction approximating é up
to some precision dependent on the number of qubits used, one
resorts to the continued fractions method.

e As a second pair (¢, 1) is needed, the whole algorithm is repeated.



Order finding

The order-finding algorithm

. Prepare a n-qubit register, identified as the control register, for an
integer n st 2" > 2r?, with 0)®".

. Prepare a n-qubit register, identified as the target register, with [1).
. Apply QFT to the control register, cUJ to the target and control

registers, and QFT~1 to the control register.

. Measure the control register to retrieve an estimate 7% of a random

: : 1
integer multiple of .

. With the continued fractions method obtain integers ¢;, 1 such that

1
S aa

272

X1 (4]

20 n

Fail otherwise.

. Repeat steps 1. to 6. to find another integer x>, and a second pair
< —L_. Fail otherwise.

n—1 -

22

(c2yr2) st |5 — 2

. Compute r =lem(rg, ). If rem(a", n) = 1 output r; fail otherwise.
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Afterthoughts

How can the algorithm fail?

e The eigenvalue estimation algorithm produces a bad estimate of é
This occurs with a bounded probability that can be made smaller by
an increase in the size of the circuit.

e The value found is not r itself, but a factor of r, which will be the
case if the computed ¢j, c; have common factors, eventually
requiring additional repetitions of the algorithm

Recall

Like all quantum algorithms, this one is probabilistic: it gives the correct
answer with high probability, and the probability of failure can be
decreased by repeating the algorithm.
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Afterthoughts

Cost
O((log n)?), the major cost coming from the modular exponentiation:

e The critical computation is the chj operations, for
j€{0,1,2,--- ,2"1} which constitutes cUJ and requires 2/
applications of operator U,.

e However, chj = cU_,; — multiplying by rem (a, n) for 2/ times is

2/

equivalent to multiplying by rem (a<, n) only once.

® rem (a2j, n) can be computed with j multiplications modulo n
(exponential improvement over multiplying rem (a, n) for 2/ times).
e QFT requires O(log n)?) gates.

The classical algorithm is exponential on n: the best known one uses
eO(Vlogny/(loglog(n)) ¢|assical gates.
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Factorization

In his famous 1994 paper, Peter Shor proved that it is possible to factor a
n-bit number in time that is polynomial to n.

The factorization problem
Given an integer n, find positive integers p1, P2, s Pmy My 2y 5 Im
such that
e Integers p1, p2,- -, Pm are distinct primes;
n

e and, n=pi X pP X -+ X pim.

Note that one may assume n to be odd and contain at least two distinct
odd prime factors (why?7)
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Factorization

Since the test for primality can be done classically in polynomial time,
the factoring problem can be reduced to a O(log n) instances of the
following problem:

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute
two integers
l1<n<n and 1<m<n

stn=ny X n
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Factorization

Miller proved in 1975 that this problem reduces probabilistically to the
order-finding problem, discussed above.

All those reductions are classical: only the sampling estimates problem is
quantum.
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Reduction to order-finding

e Choose randomly, with uniform probability, an integer a and
compute its order r such that a and n are coprime (test a from
{2)3) Hh— 2})

e If ris even (it will be with at least a probability of 0.5), a" — 1 can
be factorized as
a’—1 = (a2 —1)(a? +1)
e As r is the order of a, n divides a" — 1, which means n must share a

factor with (az — 1), or (a2 + 1), or both.

This factor can be extracted by the Euclides algorithms which
efficiently returns ged(a” — 1, n).

Question
But how can be sure such a factor in non trivial?
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Reduction to order-finding

e Clearly n does not divide (az — 1).

Actually, if rem (a2 —1,n) =0
of a.

. 5, rather than r, would be the order

e However, n may divide (az 4+ 1), i.e. a? = 1(mod n) and not share
any factor with (az —1).

Thus, the reduction is probabilistic according to the following

Theorem: Let n = pi* X p?2 x -+ X pim be the prime factorization of an

odd number with m > 2. Then for a random a, chosen uniformely as
before, the probability that its order is even and az # —1(mod n) is at

9
least (1 — 27] > 1¢-

For number theoretic results see N. Koblitz. A Course in Number Theory
and Cryptography, Springer, 1994,
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Shor's algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer

Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE
Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of
the time complexity of factoring from O(eV™) to O(n3log n), with
potential impact in cryptography.

12301866845301177551304949583849627207
72853569595334792197322452151726400507
26365751874520219978646938995647494277
40638459251925573263034537315482680791

70261221429134616704292143116022212404
7927473779408066535141959745985

6902143413 =
%2
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Shor's algorithm

1. Choose 1 <a< n—1 randomly.
2. If ged(a, n) > 1, then return ged(a, n).

3. If ged(a, n) =1, then use the order-finding algorithm to compute r
— the order of a wrt n.

4. If ris odd or az = —1(mod n)
then return to 1.
else return ged(az — 1, n) and ged(az + 1, n).
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Shor's algorithm

Shor's approach to estimate a random integer multiple of % in his original
paper was different from the one discussed in this lecture, as an
application of the eigenvalue estimation algorithm.

Shor's approach (based on period finding)

o Create a state
211

Z |x [rem (a*, n))

which is shown to be re-written as

r—1 mp—1
Z < Z |zr + b) > [rem (2%, n))

where my, is the largest integer st (mp—1)r + b < 2" —1.
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Shor's algorithm
Shor's approach (based on period finding)

e Measuring the target register yields rem (a°, n) for b chosen
uniformly at random from {0,1,2,---,r — 1}, and leaves the control
register in

mp—1

1
N Z |zr + b)

=0

e Apply QFT,,! to the control register
Note that, if r, mj, were known (1), applying QFT,,. would lead to

mpr

r—1

L
D e T myj)

Jj=0

i.e. only values x such that Fxb = £ would be measured.

e Measure x and output 3;.
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Shor's algorithm

Note that in both approaches the circuit is the same.
The only difference is the basis in which the state of the system is
analysed:

e the eigenvector basis
e the computational basis in Shor's original algorithm.

Shor’s original algorithm is based on the period finding algorithm, which
is another application of phase estimation
(see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT.
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Continued Fractions

Method to approximate any real number t with a sequence of rational
numbers of the form

. 1
[ag, a1, -+ ,ap] defined by ag + ———5—
a + a+ T
Z
computed inductively as follows
ap = \_tJ rn = t—ag

1 1 1
0 = | PR
! r1 T L

The sequence [ag, a1, - - - , ap] is called the p-convergent of t.
If r, = 0 the continued fraction terminates with a, and

t =lag, a1,y apl,



Annex: Continued Fractions

Shor's algorithm

Order finding

Eigenvalue estimation
Continued Fractions

47 — [3,1,1,1,1,2]

Example: 73
47 8 1
2 — 34— = 34—
3 T3 "D
1 1
=3+ =3+
1+3 143
1 1
— 3+ — =3t
1+@ “1‘1_’_%
3
1 1 1
=34y =3+ =3+ :
+1+ 1 +1+111 +1+1 T
3 =
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Continued Fractions

Theorem: The expansion terminates iff t is a rational number.
[which makes continued fractions the right, finite expansion for rational
numbers, differently form decimal expansion]

Theorem: [ag, a1, ,a,] = % where
'

Po = ao, qo = 1
p1 = 1+ apa
pj = ajpj—1+pj—2, qi = ajqj—1+qj—2

Theorem: Let x and 5 be rationals st

L I iy
gl 2

P’l

Then, g is a convergent of the continued fraction for x.
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