Quantum Computation

(Lecture 9)

Luís Soares Barbosa

Quantum Computing Course Unit

Universidade do Minho, 2021

The problem

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort to the following technique:

- Take a controlled version of an operator U_{f} and prepare the target qubit with an eigenvector;
- with the effect of pushing up (or kicking back) the associated eigenvalue to the state of the control qubit as in

$$
U_{f}\left(a_{0}|0\rangle+a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)=\left((-1)^{f(0)} a_{0}|0\rangle+(-1)^{f(1)} a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)
$$

The problem

The question
Can this technique be generalised to estimate the eigenvalues of an arbitrary, n-qubit unitary operator U?

Let $c U$ be a controlled version of a unitary operator U, and $\left(|\phi\rangle, e^{2 \pi i w}\right)$ an eigenvector, eigenvalue pair. Then,

$$
\begin{aligned}
& c U|0\rangle|\phi\rangle=|0\rangle|\phi\rangle \\
& c U|1\rangle|\phi\rangle=|1\rangle U|\phi\rangle=|1\rangle e^{2 \pi i w}|\phi\rangle=e^{2 \pi i w}|1\rangle|\phi\rangle
\end{aligned}
$$

The eigenvalue of U is encoded into the relative phase factor between the basis states of the control qubit of $c U$, thus becoming a measurable quantity.

The problem

The eigenvalue estimation problem
Given a circuit for an operator U, and an eigenvector, eigenvalue pair, $\left(|\phi\rangle, e^{2 \pi i w}\right)$, determine a good estimate for w.

The idea
Prepare a state

$$
\begin{aligned}
& \frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{2^{n}-1} e^{2 \pi i w y}|y\rangle= \\
& \left(\frac{|0\rangle+e^{2 \pi i\left(2^{n-1} w\right)}|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+e^{2 \pi i\left(2^{n-2} w\right)}|1\rangle}{\sqrt{2}}\right) \otimes \cdots \otimes\left(\frac{|0\rangle+e^{2 \pi i w}|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

and resort to $Q F T^{-1}$ to obtain an estimate for w.

The strategy

To prepare this state note that

- $|\phi\rangle$ is also an eigenvector of U^{2}, with eigenvalue $\left(e^{2 \pi i w}\right)^{2}=e^{4 \pi i w}$.
- in general, this applies to U^{q}, with eigenvalue $e^{2 q \pi i w}$, for any integer q.

Thus, it is enough to build a controlled- U gate, set the target qubit to the eigenstate $|\phi\rangle$, and compute for the relevant j,

$$
c U^{2^{j}}\left(\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)|\phi\rangle\right)=\left(\frac{|0\rangle+e^{2 \pi i\left(2^{j} w\right)}|1\rangle}{\sqrt{2}}\right)
$$

The strategy

The envisaged circuit implements a sequence of controlled- $U^{2^{j}}$ gates each controlled on the j-significant bit of

$$
x=2^{n-1} x_{n-1}+\cdots+2 x_{1}+x_{0}
$$

The strategy

... followed by $Q F T^{-1}$

The strategy

Observe that

- Applying this sequence of controlled- $U^{2^{j}}$ gates is equivalent to the successive application of U a total of x times, as captured by the following $c U^{\times}$gate:

$$
c U^{x}(|x\rangle|\phi\rangle)=\left(|x\rangle U^{x}|\phi\rangle\right)
$$

- On the other hand, the control qubits are prepared through $H^{\otimes n}|0\rangle^{\otimes n}$ as

$$
\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \otimes \cdots \otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)
$$

which can be accomplished by QFT again:

$$
H^{\otimes n}|0\rangle^{\otimes n}=\frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1}|x\rangle=Q F T|0\rangle^{\otimes n}
$$

The algorithm

1. Prepare a n-qubit register, identified as the control register, with $|0\rangle^{\otimes n}$ and apply QFT to it.
2. Apply $c U^{X}$ to the eigenstate $|\phi\rangle$ controlled on the state of the control register.
3. Apply $Q F T^{-1}$ to the control register.
4. Measure the control register to obtain a string of bits encoding the integer x.
5. Output the value $\tilde{w}=\frac{x}{2^{n}}$ as an estimate for w.

Going generic

What if $|\phi\rangle$ is an arbitrary state?
By the spectral theorem one knows that the eigenvectors $\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle, \cdots\right\}$ (with eigenvalues $e^{2 \pi i w_{j}}$, for $j=1,2, \cdots$) of U form a basis for the 2^{n}-dimensional vector space on which U acts. Thus, one may write

$$
|\phi\rangle=\sum_{j=0}^{2^{n}-1} \alpha_{j}\left|\phi_{j}\right\rangle
$$

The algorithm above maps, for each eigenvector of U,

$$
|0\rangle^{\otimes}\left|\phi_{j}\right\rangle \mapsto\left|\tilde{w}_{j}\right\rangle\left|\phi_{j}\right\rangle
$$

which, by linearity, entails

$$
|\phi\rangle \mapsto \sum_{j=0}^{2^{n}-1} \alpha_{j}\left|\tilde{w}_{j}\right\rangle\left|\phi_{j}\right\rangle
$$

The order-finding problem

Let's discuss now an application of the eigenvalue estimation to a problem which is central to the landmark Shor's algorithm for prime factorization.

The order-finding problem
Given two coprime integers a and n (i.e. st $\operatorname{gcd}(a, n)=1$), find the order of a modulo n.

Preliminaries

Order of an element in a group
The order of an element a in a group $G=\left(A, \theta, e,^{-1}\right)$ is the least positive integer r such that $a^{r}=e$, if any such r exists

Examples

- Every element of the permutation group of degree 4

$$
\text { (bijections onto }\{1,2,3,4\}, \cdot, \text { id, }{ }^{-1} \text {) }
$$

has order 4. For example, consider element

$$
(1,2,3,4)=\{1 \mapsto 2,2 \mapsto 3,3 \mapsto 4,4 \mapsto 1\}
$$

$$
\begin{aligned}
& (1,2,3,4)^{1}=(1,2,3,4) \neq i d \\
& (1,2,3,4)^{2}=(1,3)(2,4) \neq i d \\
& (1,2,3,4)^{3}=(1,4,3,2) \neq i d \\
& (1,2,3,4)^{4}=i d
\end{aligned}
$$

Preliminaries

- $\operatorname{In} Z=\left(Z, \times, 1,{ }^{-1}\right)$ every element but 0 has order ∞.
- Consider the group of integers modulo n,

$$
z_{n}=\left(\{0,1,2, \cdots, n-1\}, \times_{n}, 1,{ }^{-1}\right)
$$

Note then when defining the order of a as the smallest positive integer r such that $a^{r}=1$, the exponentiation is taken modulo n, and therefore the equality can be written as

$$
a^{r}=1(\bmod n)
$$

where $x=y(\bmod n)$ abbreviates $\frac{x-y}{n}=0$ which is the equality in z_{n}
So, e.g. the order of 4 in z_{5} is 2 because

$$
\begin{aligned}
& 4^{1}=4(\bmod 5) \\
& 4^{2}=1(\bmod 5)
\end{aligned}
$$

The problem

Note that any integer $a \operatorname{st} \operatorname{gcd}(a, n)=1$ the number 1 will appear somewhere in the sequence

$$
\operatorname{rem}(a, n), \operatorname{rem}\left(a^{2}, n\right), \operatorname{rem}\left(a^{3}, n\right), \cdots
$$

after what the sequence repeats itself in a periodic way.

The order-finding problem
Given two coprime integers a and n (i.e. st $\operatorname{gcd}(a, n)=1$), find the order of a modulo n, i.e. the smallest positive integer r such that

$$
a^{r}=1(\bmod n)
$$

Strategy: The eigenvalue approach

The order-finding problem is basically an application of eigenvalue estimation for operator

$$
U_{a}(|q\rangle)=|\operatorname{rem}(q a, n)\rangle \quad \text { for } 0 \leq q<n
$$

Clearly, U_{a} is unitary: being a coprime with n, a has an inverse modulo n and, thus, is reversible.

Note that U_{a} can be extended reversibly to an implementation in a circuit over m qubits ($2^{m}>n$) making

$$
\begin{aligned}
& U_{a}(|q\rangle)=|\operatorname{rem}(q a, n)\rangle \quad \text { for } 0 \leq q<n \\
& U_{a}(|q\rangle)=|q\rangle \quad \text { for } q \geq n
\end{aligned}
$$

In any case, let us focus on the action of U_{a} restricted to the state space spanned by $\{|0\rangle,|1\rangle, \cdots,|n-1\rangle\}$.

Strategy: The eigenvalue approach

Since $a^{r}=1(\bmod n)$,

$$
U_{a}^{r}(|q\rangle)=\left|\operatorname{rem}\left(q a^{r}, n\right)\right\rangle=|q\rangle
$$

i.e. U_{a} is the r th root of the identity operator I.

It can be shown that the eigenvalues λ of such an operator satisfy $\lambda^{r}=1$, which means they take the form $e^{2 \pi i \frac{\kappa}{r}}$, for some integer k.

Thus, suppose one is able to prepare the state

$$
\left|u_{k}\right\rangle=\frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2 \pi i \frac{k}{r} q}\left|\operatorname{rem}\left(a^{q}, n\right)\right\rangle
$$

Strategy: The eigenvalue approach

Then, observing for the last step that

$$
e^{2 \pi i \frac{k}{r} r}\left|\operatorname{rem}\left(a^{q+1}, n\right)\right\rangle=e^{2 \pi i \frac{k}{r} 0}\left|\operatorname{rem}\left(a^{0}, n\right)\right\rangle
$$

compute

$$
\begin{aligned}
U_{a}\left|u_{k}\right\rangle & =\frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2 \pi i \frac{k}{r} q} U_{a}\left|\operatorname{rem}\left(a^{q}, n\right)\right\rangle \\
& =\frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2 \pi i \frac{k}{r} q}\left|\operatorname{rem}\left(a^{q+1}, n\right)\right\rangle \\
& =e^{-2 \pi i \frac{k}{r}} \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2 \pi i \frac{k}{r}(q+1)}\left|\operatorname{rem}\left(a^{q+1}, n\right)\right\rangle \\
& =e^{-2 \pi i \frac{k}{r}}\left|u_{k}\right\rangle
\end{aligned}
$$

Strategy: The eigenvalue approach

... concluding that

$$
\left|u_{k}\right\rangle \text { is an eigenstate for } U_{a} \text { with eigenvalue } e^{-2 \pi i \frac{k}{r}}
$$

Thus, for any value $0 \leq k \leq r-1$, the eigenvalue estimation algorithm will compute an approximation $\widetilde{k / r}$ to $\frac{k}{r}$ mapping

$$
|0\rangle\left|u_{k}\right\rangle \mapsto \widetilde{|k / r\rangle}\left|u_{k}\right\rangle
$$

However ...
Without knowing r we do not know how to prepare $\left|u_{k}\right\rangle$.
Fortunately, it is not necessary!

Strategy: The eigenvalue approach

Instead of preparing an eigenstate corresponding to an eigenvalue $e^{2 \pi i \frac{k}{r}}$ for a randomly selected $k \in\{0,1, \cdots, r-1\}$, it suffices to prepare a uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a random eigenvalue.

Question

How to prepare such a superposition without knowing r ?

Strategy: The eigenvalue approach

The uniform superposition is

$$
\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|u_{k}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2 \pi i \frac{k}{r} q}\left|\operatorname{rem}\left(a^{q}, n\right)\right\rangle
$$

Note that

$$
\left|\operatorname{rem}\left(a^{q}, n\right)\right\rangle=|1\rangle \text { iff } \operatorname{rem}(q, n)=0
$$

Thus, the amplitude of $|1\rangle$ in the above state is the sum over the terms for which $q=0$ (because $r-1<n$)

$$
\frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i \frac{k}{r} 0}=\frac{1}{r} \sum_{k=0}^{r-1} 1=1
$$

Strategy: The eigenvalue approach

If the amplitude of $|1\rangle$ is 1 , this means that the amplitudes of all other basis states are 0 , yielding

$$
\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|u_{k}\right\rangle=|1\rangle
$$

Thus, the eigenvalue estimation algorithm maps

$$
|0\rangle|1\rangle=|0\rangle\left(\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|u_{k}\right\rangle\right)=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}|0\rangle\left|u_{k}\right\rangle \mapsto \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}|\widetilde{k / r}\rangle\left|u_{k}\right\rangle
$$

Strategy: The eigenvalue approach

Thus, after executing the eigenvalue estimation algorithm the first register contains a uniform superposition of states $|k / r\rangle$ for $k \in\{0,1, \cdots, r-1\}$.

Measuring this register yields an integer x st $\frac{x}{2^{n}}$ is an estimate of $\frac{k}{r}$ for some k selected uniformly at random.

Finally, to estimate r one resorts to the following result in number theory:

Estimating r

Theorem: Let r be a positive integer, and take integers k_{1} to k_{2} selected independently and uniformly at random from $\{0,1, \cdots, r-1\}$. Let $c_{1}, c_{2}, r_{1}, r_{2}$ be integers st $\operatorname{gcd}(r 1, c 1)=\operatorname{gcd}(r 2, c 2)=1$ and

$$
\frac{k_{1}}{r}=\frac{c_{1}}{r_{1}} \quad \text { and } \quad \frac{k_{2}}{r}=\frac{c_{2}}{r_{2}}
$$

Then, $r=\operatorname{lcm}\left(r_{1}, r_{2}\right)$ with probability at least $\frac{6}{\pi^{2}}$.
Thus

- To obtain $\frac{c_{1}}{r_{1}}$ from $\widetilde{k / r}$, i.e. the nearest fraction approximating $\frac{k}{r}$ up to some precision dependent on the number of qubits used, one resorts to the continued fractions method.
- As a second pair $\left(c_{2}, r_{2}\right)$ is needed, the whole algorithm is repeated.

The order-finding algorithm

1. Prepare a n-qubit register, identified as the control register, for an integer n st $2^{n}>2 r^{2}$, with $|0\rangle^{\otimes n}$.
2. Prepare a n-qubit register, identified as the target register, with $|1\rangle$.
3. Apply $Q F T$ to the control register, $c U_{a}^{\times}$to the target and control registers, and $Q F T^{-1}$ to the control register.
4. Measure the control register to retrieve an estimate $\frac{x_{1}}{2^{n}}$ of a random integer multiple of $\frac{1}{r}$.
5. With the continued fractions method obtain integers c_{1}, r_{1} such that

$$
\left|\frac{x_{1}}{2^{n}}-\frac{c_{1}}{r_{1}}\right| \leq \frac{1}{2^{\frac{n-1}{2}}}
$$

Fail otherwise.
6. Repeat steps 1 . to 6 . to find another integer x_{2}, and a second pair $\left(c_{2}, r_{2}\right)$ st $\left|\frac{x_{2}}{2^{n}}-\frac{c_{2}}{r_{2}}\right| \leq \frac{1}{2^{\frac{n-1}{2}}}$. Fail otherwise.
7. Compute $r=\operatorname{Icm}\left(r_{1}, r_{2}\right)$. If rem $\left(a^{r}, n\right)=1$ output r; fail otherwise.

Afterthoughts

How can the algorithm fail?

- The eigenvalue estimation algorithm produces a bad estimate of $\frac{k}{r}$. This occurs with a bounded probability that can be made smaller by an increase in the size of the circuit.
- The value found is not r itself, but a factor of r, which will be the case if the computed c_{1}, c_{2} have common factors, eventually requiring additional repetitions of the algorithm

Recall

Like all quantum algorithms, this one is probabilistic: it gives the correct answer with high probability, and the probability of failure can be decreased by repeating the algorithm.

Afterthoughts

Cost
$\mathcal{O}\left((\log n)^{3}\right)$, the major cost coming from the modular exponentiation:

- The critical computation is the $c U_{a}^{j^{j}}$ operations, for $j \in\left\{0,1,2, \cdots, 2^{n-1}\right\}$, which constitutes $c U_{a}^{x}$ and requires 2^{j} applications of operator U_{a}.
- However, $c U_{a}^{2}=c U_{a^{2}}$ - multiplying by rem (a, n) for 2^{j} times is equivalent to multiplying by rem $\left(a^{2^{j}}, n\right)$ only once.
- rem $\left(a^{2^{j}}, n\right)$ can be computed with j multiplications modulo n (exponential improvement over multiplying rem (a, n) for 2^{j} times).
- QFT requires $\left.\mathcal{O}(\log n)^{2}\right)$ gates.

The classical algorithm is exponential on n : the best known one uses $e^{\mathcal{O}(\sqrt{\log n} \sqrt{(\log \log (n))}}$ classical gates.

Factorization

In his famous 1994 paper, Peter Shor proved that it is possible to factor a n-bit number in time that is polynomial to n.

The factorization problem
Given an integer n, find positive integers $p_{1}, p_{2}, \cdots, p_{m}, r_{1}, r_{2}, \cdots, r_{m}$ such that

- Integers $p_{1}, p_{2}, \cdots, p_{m}$ are distinct primes;
- and, $n=p_{1}^{r_{1}} \times p_{2}^{r_{2}} \times \cdots \times p_{m}^{r_{m}}$.

Note that one may assume n to be odd and contain at least two distinct odd prime factors (why?)

Factorization

Since the test for primality can be done classically in polynomial time, the factoring problem can be reduced to a $\mathcal{O}(\log n)$ instances of the following problem:

The odd non-prime-power integer splitting problem
Given an odd integer n, with at least two distinct prime factors, compute two integers

$$
1<n_{1}<n \text { and } 1<n_{2}<n
$$

st $n=n_{1} \times n_{2}$

Factorization

Miller proved in 1975 that this problem reduces probabilistically to the order-finding problem, discussed above.

All those reductions are classical: only the sampling estimates problem is quantum.

Reduction to order-finding

- Choose randomly, with uniform probability, an integer a and compute its order r such that a and n are coprime (test a from $\{2,3, \cdot, n-2\}$)
- If r is even (it will be with at least a probability of 0.5), $a^{r}-1$ can be factorized as

$$
a^{r}-1=\left(a^{\frac{r}{2}}-1\right)\left(a^{\frac{r}{2}}+1\right)
$$

- As r is the order of a, n divides $a^{r}-1$, which means n must share a factor with ($a^{\frac{r}{2}}-1$), or ($a^{\frac{r}{2}}+1$), or both.
This factor can be extracted by the Euclides algorithms which efficiently returns $\operatorname{gcd}\left(a^{r}-1, n\right)$.

Question

But how can be sure such a factor in non trivial?

Reduction to order-finding

- Clearly n does not divide $\left(a^{\frac{r}{2}}-1\right)$.

Actually, if rem $\left(a^{\frac{r}{2}}-1, n\right)=0, \frac{r}{2}$, rather than r, would be the order of a.

- However, n may divide $\left(a^{\frac{r}{2}}+1\right)$, i.e. $a^{\frac{r}{2}}=1(\bmod n)$ and not share any factor with $\left(a^{\frac{r}{2}}-1\right)$.

Thus, the reduction is probabilistic according to the following
Theorem: Let $n=p_{1}^{r_{1}} \times p_{2}^{r_{2}} \times \cdots \times p_{m}^{r_{m}}$ be the prime factorization of an odd number with $m \geq 2$. Then for a random a, chosen uniformely as before, the probability that its order is even and $a^{\frac{r}{2}} \neq-1(\bmod n)$ is at least $\left(1-\frac{1}{2^{m}}\right) \geq \frac{9}{16}$.
For number theoretic results see N. Koblitz. A Course in Number Theory and Cryptography, Springer, 1994.

Shor's algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 ```Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE \\ Computer Society Press, pp. 124-134 (1994)```

was a turning point in quantum computing for its spectacular decrease of the time complexity of factoring from $\mathcal{O}\left(e^{\sqrt[3]{n}}\right)$ to $\mathcal{O}\left(n^{3} \log n\right)$, with potential impact in cryptography.

Shor's algorithm

1. Choose $1 \leq \mathrm{a} \leq n-1$ randomly.
2. If $\operatorname{gcd}(a, n)>1$, then return $\operatorname{gcd}(a, n)$.
3. If $\operatorname{gcd}(a, n)=1$, then use the order-finding algorithm to compute r - the order of a wrt n.
4. If r is odd or $a^{\frac{r}{2}}=-1(\bmod n)$ then return to 1 . else return $\operatorname{gcd}\left(a^{\frac{r}{2}}-1, n\right)$ and $\operatorname{gcd}\left(a^{\frac{r}{2}}+1, n\right)$.

Shor's algorithm

Shor's approach to estimate a random integer multiple of $\frac{1}{r}$ in his original paper was different from the one discussed in this lecture, as an application of the eigenvalue estimation algorithm.

Shor's approach (based on period finding)

- Create a state

$$
\sum_{x=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}}|x\rangle\left|\operatorname{rem}\left(a^{x}, n\right)\right\rangle
$$

which is shown to be re-written as

$$
\sum_{b=0}^{r-1}\left(\frac{1}{\sqrt{2^{n}}} \sum_{z=0}^{m_{b}-1}|z r+b\rangle\right)\left|\operatorname{rem}\left(a^{x}, n\right)\right\rangle
$$

where m_{b} is the largest integer st $\left(m_{b}-1\right) r+b \leq 2^{n}-1$.

Shor's algorithm

Shor's approach (based on period finding)

- Measuring the target register yields rem $\left(a^{b}, n\right)$ for b chosen uniformly at random from $\{0,1,2, \cdots, r-1\}$, and leaves the control register in

$$
\frac{1}{\sqrt{m_{b}}} \sum_{z=0}^{m_{b}-1}|z r+b\rangle
$$

- Apply $Q F T_{2^{n}}^{-1}$ to the control register

Note that, if r, m_{b} were known (!), applying $Q F T_{m_{b} r}^{-1}$ would lead to

$$
\sum_{j=0}^{r-1} e^{-2 \pi i \frac{b}{r} j}\left|m_{b} j\right\rangle
$$

i.e. only values x such that $\frac{x}{r m_{b}}=\frac{j}{r}$ would be measured.

- Measure x and output $\frac{x}{2^{n}}$.

Shor's algorithm

Note that in both approaches the circuit is the same.
The only difference is the basis in which the state of the system is analysed:

- the eigenvector basis
- the computational basis in Shor's original algorithm.

Shor's original algorithm is based on the period finding algorithm, which is another application of phase estimation (see [Nielsen \& Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT.

Continued Fractions

Method to approximate any real number t with a sequence of rational numbers of the form

$$
\left[a_{0}, a_{1}, \cdots, a_{p}\right] \text { defined by } a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{p}}}}}
$$

computed inductively as follows

$$
\begin{aligned}
a_{0}=\lfloor t\rfloor & r_{0}=t-a_{0} \\
a_{j}=\left\lfloor\frac{1}{r_{j-1}}\right\rfloor & r_{j}=\frac{1}{r_{j-1}}-\left\lfloor\frac{1}{r_{j-1}}\right\rfloor
\end{aligned}
$$

The sequence $\left[a_{0}, a_{1}, \cdots, a_{p}\right]$ is called the p-convergent of t. If $r_{p}=0$ the continued fraction terminates with a_{p} and $t=\left[a_{0}, a_{1}, \cdots, a_{p}\right]$,

Continued Fractions

Example: $\frac{47}{13}=[3,1,1,1,1,2]$

$$
\begin{aligned}
\frac{47}{13} & =3+\frac{8}{13}=3+\frac{1}{\frac{13}{8}} \\
& =3+\frac{1}{1+\frac{5}{8}}=3+\frac{1}{1+\frac{1}{3}} \\
& =3+\frac{1}{1+\frac{1}{1+\frac{3}{5}}}=3+\frac{1}{1+\frac{1}{1+\frac{1}{3}}} \\
& =3+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{3}}}}=3+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=3+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}}
\end{aligned}
$$

Continued Fractions

Theorem: The expansion terminates iff t is a rational number. [which makes continued fractions the right, finite expansion for rational numbers, differently form decimal expansion]

Theorem: $\left[a_{0}, a_{1}, \cdots, a_{p}\right]=\frac{p_{j}}{q_{j}}$ where

$$
\begin{aligned}
p_{0} & =a_{0}, q_{0}=1 \\
p_{1} & =1+a_{0} a_{1} \\
p_{j} & =a_{j} p_{j-1}+p_{j-2}, \quad q_{j}=a_{j} q_{j-1}+q_{j-2}
\end{aligned}
$$

Theorem: Let x and $\frac{p}{q}$ be rationals st

$$
\left|x-\frac{p}{q}\right| \leq \frac{1}{2 q^{2}} .
$$

Then, $\frac{p}{q}$ is a convergent of the continued fraction for x.

