
Quantum Computation
(Lecture 9)
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The problem

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort
to the following technique:

• Take a controlled version of an operator Uf and prepare the target
qubit with an eigenvector;

• with the effect of pushing up (or kicking back) the associated
eigenvalue to the state of the control qubit as in

Uf (a0|0〉+a1|1〉)
(
|0〉− |1〉√

2

)
=
(
(−1)f (0)a0|0〉+ (−1)f (1)a1|1〉

) ( |0〉− |1〉√
2

)
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The problem

The question
Can this technique be generalised to estimate the eigenvalues of an
arbitrary, n-qubit unitary operator U?

Let cU be a controlled version of a unitary operator U, and (|φ〉, e2πiw )
an eigenvector, eigenvalue pair. Then,

cU |0〉|φ〉 = |0〉|φ〉
cU |1〉|φ〉 = |1〉U |φ〉 = |1〉e2πiw |φ〉 = e2πiw |1〉|φ〉

The eigenvalue of U is encoded into the relative phase factor between the
basis states of the control qubit of cU, thus becoming a measurable
quantity.
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The problem

The eigenvalue estimation problem
Given a circuit for an operator U, and an eigenvector, eigenvalue pair,
(|φ〉, e2πiw ), determine a good estimate for w .

The idea
Prepare a state

1√
2n

2n−1∑
y=0

e2πiwy |y〉 =(
|0〉+ e2πi(2n−1w)|1〉√

2

)
⊗

(
|0〉+ e2πi(2n−2w)|1〉√

2

)
⊗ · · · ⊗

(
|0〉+ e2πiw |1〉√

2

)
and resort to QFT−1 to obtain an estimate for w .
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The strategy

To prepare this state note that

• |φ〉 is also an eigenvector of U2, with eigenvalue (e2πiw )2 = e4πiw .

• in general, this applies to Uq, with eigenvalue e2qπiw , for any
integer q.

Thus, it is enough to build a controlled-U gate, set the target qubit to
the eigenstate |φ〉, and compute for the relevant j ,

cU2j

((
|0〉+ |1〉√

2

)
|φ〉
)

=

(
|0〉+ e2πi(2jw)|1〉√

2

)
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The strategy

The envisaged circuit implements a sequence of controlled-U2j

gates each
controlled on the j-significant bit of

x = 2n−1xn−1 + · · ·+ 2x1 + x0
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The strategy

... followed by QFT−1
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The strategy
Observe that

• Applying this sequence of controlled-U2j

gates is equivalent to the
successive application of U a total of x times, as captured by the
following cUx gate:

cUx(|x〉|φ〉) = (|x〉Ux |φ〉)

• On the other hand, the control qubits are prepared through
H⊗n|0〉⊗n as(

|0〉+ |1〉√
2

)
⊗
(
|0〉+ |1〉√

2

)
⊗ · · · ⊗

(
|0〉+ |1〉√

2

)
which can be accomplished by QFT again:

H⊗n|0〉⊗n =
1√
2n

2n−1∑
x=0

|x〉 = QFT |0〉⊗n
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The algorithm

1. Prepare a n-qubit register, identified as the control register, with
|0〉⊗n and apply QFT to it.

2. Apply cUx to the eigenstate |φ〉 controlled on the state of the
control register.

3. Apply QFT−1 to the control register.

4. Measure the control register to obtain a string of bits encoding the
integer x .

5. Output the value w̃ = x
2n as an estimate for w .
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Going generic

What if |φ〉 is an arbitrary state?
By the spectral theorem one knows that the eigenvectors {|φ1〉, |φ2〉, · · ·}
(with eigenvalues e2πiwj , for j = 1, 2, · · · ) of U form a basis for the
2n-dimensional vector space on which U acts. Thus, one may write

|φ〉 =

2n−1∑
j=0

αj |φj〉

The algorithm above maps, for each eigenvector of U,

|0〉⊗|φj〉 7→ |w̃j〉|φj〉

which, by linearity, entails

|φ〉 7→ 2n−1∑
j=0

αj |w̃j〉|φj〉
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The order-finding problem

Let’s discuss now an application of the eigenvalue estimation to a problem
which is central to the landmark Shor’s algorithm for prime factorization.

The order-finding problem
Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order
of a modulo n.
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Preliminaries

Order of an element in a group
The order of an element a in a group G = (A, θ, e, −1) is the least
positive integer r such that ar = e, if any such r exists

Examples

• Every element of the permutation group of degree 4

(bijections onto {1, 2, 3, 4}, ·, id , −1)

has order 4. For example, consider element
(1, 2, 3, 4)= {1 7→ 2, 2 7→ 3, 3 7→ 4, 4 7→ 1}

(1, 2, 3, 4)1 = (1, 2, 3, 4) 6= id

(1, 2, 3, 4)2 = (1, 3)(2, 4) 6= id

(1, 2, 3, 4)3 = (1, 4, 3, 2) 6= id

(1, 2, 3, 4)4 = id
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Preliminaries

• In Z = (Z,×, 1, −1) every element but 0 has order ∞.

• Consider the group of integers modulo n,

Zn = ({0, 1, 2, · · · , n − 1},×n, 1,
−1)

Note then when defining the order of a as the smallest positive
integer r such that ar = 1, the exponentiation is taken modulo n,
and therefore the equality can be written as

ar = 1 (mod n)

where x = y (mod n) abbreviates x−y
n = 0 which is the equality in

Zn

So, e.g. the order of 4 in Z5 is 2 because

41 = 4 (mod 5)

42 = 1 (mod 5)
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The problem

Note that any integer a st gcd(a, n) = 1 the number 1 will appear
somewhere in the sequence

rem (a, n), rem (a2, n), rem (a3, n), · · ·

after what the sequence repeats itself in a periodic way.

The order-finding problem
Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order
of a modulo n, i.e. the smallest positive integer r such that

ar = 1 (mod n)
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Strategy: The eigenvalue approach

The order-finding problem is basically an application of eigenvalue
estimation for operator

Ua(|q〉) = |rem (qa, n)〉 for 0 ≤ q < n

Clearly, Ua is unitary: being a coprime with n, a has an inverse modulo n
and, thus, is reversible.

Note that Ua can be extended reversibly to an implementation in a
circuit over m qubits (2m > n) making

Ua(|q〉) = |rem (qa, n)〉 for 0 ≤ q < n

Ua(|q〉) = |q〉 for q ≥ n

In any case, let us focus on the action of Ua restricted to the state space
spanned by {|0〉, |1〉, · · · , |n − 1〉}.
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Strategy: The eigenvalue approach

Since ar = 1(mod n),

U r
a(|q〉) = |rem (qar , n)〉 = |q〉

i.e. Ua is the rth root of the identity operator I .

It can be shown that the eigenvalues λ of such an operator satisfy
λr = 1, which means they take the form e2πi kr , for some integer k .

Thus, suppose one is able to prepare the state

|uk〉 =
1√
r

r−1∑
q=0

e−2πi kr q |rem (aq, n)〉
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Strategy: The eigenvalue approach

Then, observing for the last step that

e2πi kr r |rem (aq+1, n)〉 = e2πi kr 0|rem (a0, n)〉

compute

Ua|uk〉 =
1√
r

r−1∑
q=0

e−2πi kr qUa|rem (aq, n)〉

=
1√
r

r−1∑
q=0

e−2πi kr q |rem (aq+1, n)〉

= e−2πi kr
1√
r

r−1∑
q=0

e−2πi kr (q+1)|rem (aq+1, n)〉

= e−2πi kr |uk〉
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Strategy: The eigenvalue approach

... concluding that

|uk〉 is an eigenstate for Ua with eigenvalue e−2πi kr

Thus, for any value 0 ≤ k ≤ r − 1, the eigenvalue estimation algorithm

will compute an approximation k̃/r to k
r mapping

|0〉|uk〉 7→ |k̃/r〉|uk〉

However ...
Without knowing r we do not know how to prepare |uk〉.
Fortunately, it is not necessary!
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Strategy: The eigenvalue approach

Instead of preparing an eigenstate corresponding to an eigenvalue e2πi kr

for a randomly selected k ∈ {0, 1, · · · , r − 1}, it suffices to prepare a
uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of
these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a
random eigenvalue.

Question
How to prepare such a superposition without knowing r?
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Strategy: The eigenvalue approach

The uniform superposition is

1√
r

r−1∑
k=0

|uk〉 =
1√
r

r−1∑
k=0

1√
r

r−1∑
q=0

e−2πi kr q |rem (aq, n)〉

Note that
|rem (aq, n)〉 = |1〉 iff rem (q, n) = 0

Thus, the amplitude of |1〉 in the above state is the sum over the terms
for which q = 0 (because r − 1 < n)

1√
r

1√
r

r−1∑
k=0

e−2πi kr 0 =
1

r

r−1∑
k=0

1 = 1
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Strategy: The eigenvalue approach

If the amplitude of |1〉 is 1, this means that the amplitudes of all other
basis states are 0, yielding

1√
r

r−1∑
k=0

|uk〉 = |1〉

Thus, the eigenvalue estimation algorithm maps

|0〉|1〉 = |0〉

(
1√
r

r−1∑
k=0

|uk〉

)
=

1√
r

r−1∑
k=0

|0〉|uk〉 7→ 1√
r

r−1∑
k=0

|k̃/r〉|uk〉
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Strategy: The eigenvalue approach

Thus, after executing the eigenvalue estimation algorithm the first

register contains a uniform superposition of states |k̃/r〉 for
k ∈ {0, 1, · · · , r − 1}.

Measuring this register yields an integer x st x
2n is an estimate of k

r for
some k selected uniformly at random.

Finally, to estimate r one resorts to the following result in number theory:
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Estimating r

Theorem: Let r be a positive integer, and take integers k1 to k2 selected
independently and uniformly at random from {0, 1, · · · , r − 1}. Let
c1, c2, r1, r2 be integers st gcd(r1, c1) = gcd(r2, c2) = 1 and

k1

r
=

c1

r1
and

k2

r
=

c2

r2

Then, r = lcm(r1, r2) with probability at least 6
π2 .

Thus

• To obtain c1

r1
from k̃/r , i.e. the nearest fraction approximating k

r up
to some precision dependent on the number of qubits used, one
resorts to the continued fractions method.

• As a second pair (c2, r2) is needed, the whole algorithm is repeated.
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The order-finding algorithm

1. Prepare a n-qubit register, identified as the control register, for an
integer n st 2n > 2r2, with |0〉⊗n.

2. Prepare a n-qubit register, identified as the target register, with |1〉.
3. Apply QFT to the control register, cUx

a to the target and control
registers, and QFT−1 to the control register.

4. Measure the control register to retrieve an estimate x1

2n of a random
integer multiple of 1

r .

5. With the continued fractions method obtain integers c1, r1 such that∣∣∣∣ x1

2n
−

c1

r1

∣∣∣∣ ≤ 1

2
n−1

2

Fail otherwise.

6. Repeat steps 1. to 6. to find another integer x2, and a second pair

(c2, r2) st
∣∣∣ x2

2n −
c2

r2

∣∣∣ ≤ 1

2
n−1

2
. Fail otherwise.

7. Compute r = lcm(r1, r2). If rem (ar , n) = 1 output r ; fail otherwise.
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Afterthoughts

How can the algorithm fail?

• The eigenvalue estimation algorithm produces a bad estimate of k
r .

This occurs with a bounded probability that can be made smaller by
an increase in the size of the circuit.

• The value found is not r itself, but a factor of r , which will be the
case if the computed c1, c2 have common factors, eventually
requiring additional repetitions of the algorithm

Recall
Like all quantum algorithms, this one is probabilistic: it gives the correct
answer with high probability, and the probability of failure can be
decreased by repeating the algorithm.
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Afterthoughts

Cost
O((log n)3), the major cost coming from the modular exponentiation:

• The critical computation is the cU2j

a operations, for
j ∈ {0, 1, 2, · · · , 2n−1}, which constitutes cUx

a and requires 2j

applications of operator Ua.

• However, cU2j

a = cUa2j — multiplying by rem (a, n) for 2j times is

equivalent to multiplying by rem (a2j

, n) only once.

• rem (a2j

, n) can be computed with j multiplications modulo n
(exponential improvement over multiplying rem (a, n) for 2j times).

• QFT requires O(log n)2) gates.

The classical algorithm is exponential on n: the best known one uses

eO(
√

log n
√

(log log(n)) classical gates.
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Factorization

In his famous 1994 paper, Peter Shor proved that it is possible to factor a
n-bit number in time that is polynomial to n.

The factorization problem
Given an integer n, find positive integers p1, p2, · · · , pm, r1, r2, · · · , rm
such that

• Integers p1, p2, · · · , pm are distinct primes;

• and, n = pr1
1 × pr2

2 × · · · × prmm .

Note that one may assume n to be odd and contain at least two distinct
odd prime factors (why?)
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Factorization

Since the test for primality can be done classically in polynomial time,
the factoring problem can be reduced to a O(log n) instances of the
following problem:

The odd non-prime-power integer splitting problem
Given an odd integer n, with at least two distinct prime factors, compute
two integers

1 < n1 < n and 1 < n2 < n

st n = n1 × n2
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Factorization

Miller proved in 1975 that this problem reduces probabilistically to the
order-finding problem, discussed above.

All those reductions are classical: only the sampling estimates problem is
quantum.
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Reduction to order-finding

• Choose randomly, with uniform probability, an integer a and
compute its order r such that a and n are coprime (test a from
{2, 3, ·, n − 2})

• If r is even (it will be with at least a probability of 0.5), ar − 1 can
be factorized as

ar − 1 = (a
r
2 − 1)(a

r
2 + 1)

• As r is the order of a, n divides ar − 1, which means n must share a
factor with (a

r
2 − 1), or (a

r
2 + 1), or both.

This factor can be extracted by the Euclides algorithms which
efficiently returns gcd(ar − 1, n).

Question
But how can be sure such a factor in non trivial?
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Reduction to order-finding

• Clearly n does not divide (a
r
2 − 1).

Actually, if rem (a
r
2 − 1, n) = 0, r

2 , rather than r , would be the order
of a.

• However, n may divide (a
r
2 + 1), i.e. a

r
2 = 1(mod n) and not share

any factor with (a
r
2 − 1).

Thus, the reduction is probabilistic according to the following

Theorem: Let n = pr1
1 × pr2

2 × · · · × prmm be the prime factorization of an
odd number with m ≥ 2. Then for a random a, chosen uniformely as
before, the probability that its order is even and a

r
2 6= −1(mod n) is at

least (1 − 1
2m ) ≥ 9

16 .

For number theoretic results see N. Koblitz. A Course in Number Theory
and Cryptography, Springer, 1994.
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Shor’s algorithm

Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer
Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE
Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of
the time complexity of factoring from O(e

3
√
n) to O(n3 log n), with

potential impact in cryptography.
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Shor’s algorithm

1. Choose 1 ≤a≤ n − 1 randomly.

2. If gcd(a, n) > 1, then return gcd(a, n).

3. If gcd(a, n) = 1, then use the order-finding algorithm to compute r
— the order of a wrt n.

4. If r is odd or a
r
2 = −1(mod n)

then return to 1.
else return gcd(a

r
2 − 1, n) and gcd(a

r
2 + 1, n).
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Shor’s algorithm

Shor’s approach to estimate a random integer multiple of 1
r in his original

paper was different from the one discussed in this lecture, as an
application of the eigenvalue estimation algorithm.

Shor’s approach (based on period finding)

• Create a state
2n−1∑
x=0

1√
2n

|x〉|rem (ax , n)〉

which is shown to be re-written as

r−1∑
b=0

(
1√
2n

mb−1∑
z=0

|zr + b〉

)
|rem (ax , n)〉

where mb is the largest integer st (mb−1)r + b ≤ 2n − 1.
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Shor’s algorithm

Shor’s approach (based on period finding)

• Measuring the target register yields rem (ab, n) for b chosen
uniformly at random from {0, 1, 2, · · · , r − 1}, and leaves the control
register in

1
√
mb

mb−1∑
z=0

|zr + b〉

• Apply QFT−1
2n to the control register

Note that, if r ,mb were known (!), applying QFT−1
mbr would lead to

r−1∑
j=0

e−2πi br j |mbj〉

i.e. only values x such that x
rmb

= j
r would be measured.

• Measure x and output x
2n .
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Shor’s algorithm

Note that in both approaches the circuit is the same.
The only difference is the basis in which the state of the system is
analysed:

• the eigenvector basis

• the computational basis in Shor’s original algorithm.

Shor’s original algorithm is based on the period finding algorithm, which
is another application of phase estimation
(see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT .
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Continued Fractions

Method to approximate any real number t with a sequence of rational
numbers of the form

[a0, a1, · · · , ap] defined by a0 +
1

a1 +
1

a2+
1

···+ 1
ap

computed inductively as follows

a0 = btc r0 = t − a0

aj =

⌊
1

rj−1

⌋
rj =

1

rj−1
−

⌊
1

rj−1

⌋

The sequence [a0, a1, · · · , ap] is called the p-convergent of t.
If rp = 0 the continued fraction terminates with ap and
t = [a0, a1, · · · , ap],
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Continued Fractions

Example: 47
13

= [3, 1, 1, 1, 1, 2]

47

13
= 3 +

8

13
= 3 +

1
13
8

= 3 +
1

1 + 5
8

= 3 +
1

1 + 1
8
5

= 3 +
1

1 + 1
1+ 3

5

= 3 +
1

1 + 1
1+ 1

5
3

= 3 +
1

1 + 1
1+ 1

1+ 2
3

= 3 +
1

1 + 1
1+ 1

1+ 1
3
2

= 3 +
1

1 + 1
1+ 1

1+ 1
1+ 1

2
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Continued Fractions

Theorem: The expansion terminates iff t is a rational number.
[which makes continued fractions the right, finite expansion for rational
numbers, differently form decimal expansion]

Theorem: [a0, a1, · · · , ap] = pj
qj

where

p0 = a0, q0 = 1

p1 = 1 + a0a1

pj = ajpj−1 + pj−2, qj = ajqj−1 + qj−2

Theorem: Let x and p
q be rationals st∣∣∣∣x −

p

q

∣∣∣∣ ≤ 1

2q2
.

Then, p
q is a convergent of the continued fraction for x .
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