Quantum Computation

(Lecture 7)

Luís Soares Barbosa

Universidade do Minho

(日) (문) (문) (문)

- E

Quantum Computing Course Unit

Universidade do Minho, 2021

Quantum algorithms

The use of superposition as a basic quantum resource was been essential for all algorithms studied until now, illustrating

- the phase kick-back technique (Deutsch-Joza)
- the phase amplification technique (Grover)

Superposition introduces 'quantum parallelism', whose miracle is, to a great extent, only apparent.

Actually, the result of the calculation is not 2^n evaluations of f: those evaluations characterize the form of the state that describes the output of the computation.

Quantum algorithms

What works indeed?

- What remains is the fact that the random selection of the x, for which f(x) can be learned, is made only after the computation has been carried out.
- Note that asserting that the selection was made before the computation corresponds to look at a superposition as merely a probabilistic phenomenon (i.e. the qubit described by a superposition is actually in one or the other of the basis states).
- Further computation makes possible to extract useful information about relations between several different values of *x*, which a classical computer could get only by making several independent evaluations.

Quantum algorithms

What works indeed?

- The price to be paid is the loss of the possibility of learning the actual value f(x) for any individual x cf Heisenberg uncertainty principle.
- cf the mistaken view that the quantum state encodes a property inherent to the qubits: it rather encodes only the possibilities available for the extraction of information from them.

Two further algorithms

- 1. Bernstein-Vazirani algorithm
- 2. Simon's algorithm, linking to the next lecture on the quantum Fourier transform and the hidden subgroup problem.

The Bernstein-Vazirani algorithm

The problem

Let *w* be an unknown non-negative integer less than 2^n and consider a function $f(x) = w \cdot x$, where

$$w \cdot x = w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

i.e. the bitwise product of x and z, modulo 2.

How many times one has to call f to determine the value of the integer w?

- Classically, *n* times: the *n* values $w \cdot 2^m$, for $0 \le m < n$.
- In a quantum computer a single invocation is enough, regardless of the number *n* of bits.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Bernstein-Vazirani algorithm

- Re-use the Deutsch-Joza circuit
- Superposition

$$\begin{aligned} H^{\otimes n} |x\rangle &= \frac{1}{\sqrt{2^n}} \sum_{y_n=0}^1 \cdots \sum_{y_1=0}^1 (-1)^{\sum_{j=1}^n x_j y_j} |y_n\rangle \cdots |y_1\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2_n-1} (-1)^{x \cdot y} |y\rangle_n \end{aligned}$$

cf

$$|H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle) = \frac{1}{\sqrt{2}}\sum_{y=0}^{1}(-1)^{xy}|y\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Bernstein-Vazirani algorithm

Putting everything together,

$$\begin{split} (H^{\otimes n} \otimes H) U_f(H^{\otimes n} \otimes H) &|0\rangle|1\rangle \\ &= (H^{\otimes n} \otimes H) U_f\left(\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle\right) \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \\ &= \frac{1}{\sqrt{2^n}} H^{\otimes n} \left(\sum_{x=0}^{2^n - 1} (-1)^{f(x)} |x\rangle\right) H\left(\frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)\right) \\ &= \frac{1}{2^n} \sum_{x=0}^{2^n - 1} \sum_{y=o}^{2^n - 1} (-1)^{f(x) + x \cdot y} |y\rangle|1\rangle \\ &= |w\rangle|1\rangle \end{split}$$

The Bernstein-Vazirani algorithm: another explanation

Some oracles can be implemented by simple circuits.

- In this case the action of U_f on the computational basis is to flip the 1 qubit target register once, whenever a bit of x and the corresponding bit of w are both 1.
- Put one CNOT for each nonzero bit of *w*, controlled by the qubit representing the corresponding bit of *x*.
- Their combined effect on every computational basis state is precisely that of *U*_f.

(日)、

The Bernstein-Vazirani algorithm: another explanation

Example of the encoding for w = 11001

The Bernstein-Vazirani algorithm: another explanation

Enveloping U_f into the algorithm

The effect is to convert every CNOTgate in the equivalent representation of U_f from C_{ij} to

$$C_{ji} = (H_i H_j) C_{ij} (H_i H_j)$$

reversing the target and control qubits.

æ

・ロト ・ 雪 ト ・ ヨ ト

The Bernstein-Vazirani algorithm: another explanation

Actually,

The Bernstein-Vazirani algorithm: another explanation

Thus

- After the reversal, the target register controls every one of the CNOT gates, and since the state of the target register is $|1\rangle$, every one of the NOT operators acts.
- That action flips just those qubits of the control register for which the corresponding bit of *w* is 1.
- Since the control register starts in the state $|0\rangle$, this changes the state of each qubit of the control to $|1\rangle$, iff it corresponds to a nonzero bit of w.
- Thus, in the end, the state of the input register changes from $|0\rangle$ to $|w\rangle$.

Simon's algorithm

The problem Let $f: 2^n \longrightarrow 2^n$ be such that for some $s \in 2^n$,

$$f(x) = f(y)$$
 iff $x = y$ or $x = y \oplus s$

Find s.

Equivalent formulation as a period-finding problem Determine the period s of a function f periodic under \oplus :

$$f(x \oplus s) = f(x)$$

Note that f is bijective if s = 0 (because $x \oplus y = 0$ iff x = y), and two-to-one otherwise (because, for a given s there is only a pair of values x, y such that $x \oplus y = s$).

Simon's algorithm, classically

Compute f for sequence of values until finding a value x_j such that $f(x_j) = f(x_i)$ for a previous x_i . Then

$$s = x_j \oplus x_i$$

- At any previous stage, if this procedure has picked *m* different values of *x*, then one concludes that s ≠ x_i ⊕ x_i for all such values.
- Thus, at most

$$\frac{1}{2}m(m-1)$$

possible values for s have been discarded (vs $2^n - 1$ possible values for s).

 The procedure is unlike to succeed until *m* becomes of the order of √2ⁿ — the execution time grows exponentially with the number of bits *n*.

æ

Going quantum

Reuse the circuit from the Deutsch-Joza algorithm but expand both registers to n qubits

The circuit

where

$$U_f = |x\rangle |c\rangle \mapsto |x\rangle |c \oplus f(x)\rangle$$

・ロト ・四ト ・ヨト ・ヨト

Going quantum

The oracle maps

$$\frac{1}{\sqrt{2^n}}\sum_{x\in 2^n}|x\rangle|0\rangle\quad\text{to}\quad\frac{1}{\sqrt{2^n}}\sum_{x\in 2^n}|x\rangle|f(x)\rangle$$

because $0 \oplus x = x$.

A measurement of the target register choose randomly one of the 2^{n-1} possible outcomes of f as f gives the same output for x and $x \oplus s$, to 2^n possible inputs correspond 2^{n-1} possible outcomes

This measurement is not very useful (why?).

Note, however, if f(k) was measured, the control register contains superposition

$$rac{1}{\sqrt{2}}(\ket{k}+\ket{k\oplus s})$$

as they are the unique values yielding f(k)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basic insight: the effect of $H^{\otimes n}$

Recall

$$H|x
angle = rac{1}{\sqrt{2}}\sum_{z\in 2}(-1)^{xz}|z
angle$$

which extends to a *n*-qubit as follows

$$\begin{aligned} \mathcal{H}^{\otimes n} |\mathbf{x}\rangle &= \mathcal{H} |\mathbf{x}_1\rangle \mathcal{H} |\mathbf{x}_2\rangle \cdots \mathcal{H} |\mathbf{x}_n\rangle \\ &= \frac{1}{\sqrt{2}} \sum_{z_1 \in 2^n} (-1)^{x_1 z_1} |z_1\rangle + \frac{1}{\sqrt{2}} \sum_{z_2 \in 2^n} (-1)^{x_2 z_2} |z\rangle \cdots \frac{1}{\sqrt{2}} \sum_{z_n \in 2^n} (-1)^{x_n z_n} |z_n\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z_1, z_2, \cdots, z_n \in 2^n} (-1)^{x_1 z_1 + x_2 z_2 + \cdots + x_n z_n} |z_1 z_2 \cdots z_n\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{z \in 2^n} (-1)^{x \cdot z} |z\rangle \end{aligned}$$

Basic insight: the effect of $H^{\otimes n}$

Consider now a particular case: applying $H^{\otimes n}$ to a superposition of two basis states, e.g. $|0\rangle$ and $|s\rangle$:

$$\begin{aligned} \mathcal{H}^{\otimes n}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|s\rangle\right) &= \frac{1}{\sqrt{2^{n+1}}}\sum_{z\in 2^n}|z\rangle + \frac{1}{\sqrt{2^{n+1}}}\sum_{z\in 2^n}(-1)^{s\cdot z}|z\rangle \\ &= \frac{1}{\sqrt{2^{n+1}}}\sum_{z\in 2^n}((1+(-1)^{s\cdot z})|z\rangle \end{aligned}$$

s · z = 1 ⇒ basis state |z⟩ vanishes (because 1 + (-1)¹ = 0)
 s · z = 0 ⇒: basis state |z⟩ is kept with amplitude ²/_{√2ⁿ⁺¹} = ¹/_{√2ⁿ⁻¹}

Basic insight: the effect of $H^{\otimes n}$

$$\begin{aligned} H^{\otimes n}\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|s\rangle\right) &= \frac{1}{\sqrt{2^{n-1}}}\sum_{z\in\{x\in 2^n\mid s\cdot z=0\}}|z\rangle \\ &= \frac{1}{\sqrt{2^{n-1}}}\sum_{z\in S^{\perp}}|z\rangle \end{aligned}$$

 S^{\perp} , for $S = \{0, s\}$ is the orthogonal complement of subspace S, with $\dim(S^{\perp}) = n - 1$ (because $\dim(S) = 1$, as S is the subspace generated by s).

Recall that for a subspace F of V, $F^{\perp} = \{v \in V \mid \forall_{x \in F}, x.v = 0\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Basic insight: the effect of $H^{\otimes n}$

In general,

$$\begin{split} H^{\otimes n} \left(\frac{1}{\sqrt{2}} |x\rangle + \frac{1}{\sqrt{2}} |y\rangle \right) &= \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^n} (-1)^{x \cdot z} |z\rangle + \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^n} (-1)^{y \cdot z} |z\rangle \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_{z \in 2^n} \underbrace{((-1)^{x \cdot z} + (-1)^{y \cdot z})}_{(\star)} |z\rangle \\ &= \frac{1}{\sqrt{2^{n-1}}} \sum_{z \in \{0, x \oplus y\}^{\perp}} (-1)^{x \cdot z} |z\rangle \end{split}$$

because expression (\star) yields 0 whenever $x \oplus y = 1$.

Putting everything together

Given the initial state $rac{1}{\sqrt{2^n}}\sum_{x\in 2^n}|x
angle|0
angle$, the oracle produces

$$rac{1}{\sqrt{2^n}}\sum_{2^n}|x
angle|f(x)
angle$$

which, as seen above, can be rewritten as

$$\frac{1}{\sqrt{2^{n-1}}}\sum_{x\in I}\frac{1}{\sqrt{2}}(|x\rangle+|x\oplus s\rangle)|f(x)\rangle$$

because 2^n can be partitioned into 2^{n-1} sets of strings $\{x, x \oplus s\}$. Set *I* is composed of one representative of each such set.

Note

Technically each pair of strings is a coset of the subgroup $S = \{0, s\}$.

Recall: coset

The coset of a subgroup S of a group (G,.) wrt $g \in G$ is

$$gS = \{g.s \mid s \in S\}$$

In this case the vector space $(Z_2)^n$, whose elements are *n*-tuples over 2, with dimension *n*, forms a group $((Z_2)^n, \oplus)$, thus,

$$xS = \{x \oplus 0, x \oplus s\}$$

Question

Why are there only 2^{n-1} cosets for this group?

Putting everything together

Applying $H^{\otimes n}$ to the control register yields a uniform superposition of elements of S^{\perp} :

$$H^{\otimes n}\left(\frac{1}{\sqrt{2}}(|x\rangle + |x \oplus s\rangle)\right) = \frac{1}{\sqrt{2^{n-1}}} \sum_{z \in S^{\perp}} (-1)^{x \cdot z} |z\rangle$$

Such a measurement returns one such z with probability $\frac{1}{2^{n-1}}$.

Putting everything together

Repeating this procedure until *n* linearly independent values $\{z_1, z_2, \dots, z_{n-1}\}$ over $(Z_2)^n$ are found, entails the possibility of solving the set of equations:

 $z_1 \cdot s = 0$ $z_2 \cdot s = 0$ \vdots $z_{n-1} \cdot s = 0$

The only solutions to this set of equations are 0 and s, so, finally, s is found.

Note that the span of $\{z_1, z_2, \cdots, z_{n-1}\}$ is S^{\perp} .

The algorithm

1. Prepare the initial state
$$rac{1}{\sqrt{2^n}}\sum_{x\in 2^n}|x
angle|0
angle$$
 and make $i:=1$

2. Apply the oracle U_f to obtain the state

$$rac{1}{\sqrt{2^n}}\sum_{x\in 2^n}|x
angle|f(x)
angle$$

which can be re-written as

$$\frac{1}{\sqrt{2^{n-1}}}\sum_{x\in I}\frac{1}{\sqrt{2}}(|x\rangle+|x\oplus s\rangle)|f(x)\rangle$$

3. Apply $H^{\otimes n}$ to the control register yielding a uniform superposition of elements of S^{\perp} .

The algorithm

- 4. Measure the first register and record the value observed z_i , which is a randomly selected element of S^{\perp} .
- 5. If the dimension of the span of $\{z_1, z_2, \dots, z_i\}$ is less than n-1, increment *i* and to go step 2; else proceed.
- 6. Then

$$\operatorname{span}\{z_1, z_2, \cdots, z_i\} = S^{\perp}$$

Thus, s will be the unique non-zero solution of

Zs = 0

where Z is the matrix whose line *i* corresponds to vector z_i . Compute this system of linear equations to find *s* by Gaussian elimination modulo 2 (in time polynomial in *n*).

Can we do better?

The algorithm computes a solution in polynomial expected running time

- In each iteration *i* the probability of *z_i* being linearly independent of the values previously computed is at least 0.5.
- Thus, after 2(n-1) iterations the probability of having found a basis for S^\perp is also at least 0.5
- The corresponding equations can be solved to find s in $O(n^2)$
- Thus, with high likelihood s is expected to be found with O(n-1) calls to the oracle, followed by $O(n^2)$ steps to solve the equations.

Can we do better?

Can we obtain a polynomial worst-case running time?

There is a basic result on analysing probabilistic algorithms stating that any algorithm that terminates with an expected number of queries equal to *n* will terminate after at most 3n queries, with probability at least $\frac{2}{3}$.

This means that one may abandon the iterative process if a solution is not found in 3n iterations and find the solution with probability $\frac{2}{3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The revised algorithm

- 5. If $i \leq 3n$ increment *i* and to go step 2; else proceed.
- 6. Solve

Zs = 0

Compute this system of linear equations and let $s_1, s_2, ..., s_n$ be the generators of the solution space.

7. If the solution space has dimension 1, spanned by s_1 , output $s = s_1$, else fail.

This solves Simon's problem with probability $\frac{2}{3}$ using 3n evaluations of f.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalised Simon's algorithm

The problem Let $f: 2^n \longrightarrow X$, for some X finite, be such that,

f(x) = f(y) iff $x-y \in S$, for some subspace $S \leq (Z_2)^n$, of dimension mFind a basis $s_1, s_2, \dots s_m$ for S.

Generalised Simon's algorithm

- If S = {0, x₁, · · · , x_{2^m-1}} is a subspace of dimension m of Z₂ⁿ, 2ⁿ can be decomposed into 2^{n-m} cosets of the form y, y ⊕ x₁, y ⊕ x₂, · · · , y ⊕ x_{2^m-1} (abbreviated to y + S)
- Step 3 yields

$$\sum_{x\in 2^n} |x
angle |f(x)
angle \ = \ rac{1}{\sqrt{2^{n-m}}} \sum_{y\in I} |y+S
angle |f(x)
angle$$

where I be a subset of 2^n consisting of one representative of each 2^{n-m} disjoint cosets, and

$$|y+S
angle = \sum_{s\in S} \frac{1}{\sqrt{2^m}} |f(x)
angle$$

Generalised Simon's algorithm

- In step 4 the first register is left in a state of the form $|y + S\rangle$ for a random y.
- After applying the Hadamard transformation, the first register contains a uniform superposition of elements of S^{\perp} and its measurement yields a value w_i sampled uniformly at random from S^{\perp} .

leading to the revised algorithm:

- 5. If the dimension of the span of $\{z_1, z_2, \dots, z_i\}$ is less than n m, increment *i* and to go step 2; else proceed.
- 6. Compute the system of linear equations

Zs = 0

and let s_1, s_2, \dots, s_m be the generators of the solution space. They form the envisaged basis.

The hidden subgroup problem

The group S is often called the hidden subgroup.

Simon's algorithm is an instance of a much general scheme, leading to exponential advantage, that will be studied next.