
Quantum Computation
(Lecture 7)

Lúıs Soares Barbosa

Quantum Computing Course Unit

Universidade do Minho, 2021

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Quantum algorithms

The use of superposition as a basic quantum resource was been essential
for all algorithms studied until now, illustrating

• the phase kick-back technique (Deutsch-Joza)

• the phase amplification technique (Grover)

Superposition introduces ’quantum parallelism’, whose miracle is, to a
great extent, only apparent.

Actually, the result of the calculation is not 2n evaluations of f : those
evaluations characterize the form of the state that describes the output
of the computation.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Quantum algorithms

What works indeed?

• What remains is the fact that the random selection of the x , for
which f (x) can be learned, is made only after the computation has
been carried out.

• Note that asserting that the selection was made before the
computation corresponds to look at a superposition as merely a
probabilistic phenomenon (i.e. the qubit described by a
superposition is actually in one or the other of the basis states).

• Further computation makes possible to extract useful information
about relations between several different values of x , which a
classical computer could get only by making several independent
evaluations.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Quantum algorithms

What works indeed?

• The price to be paid is the loss of the possibility of learning the
actual value f (x) for any individual x — cf Heisenberg uncertainty
principle.

• cf the mistaken view that the quantum state encodes a property
inherent to the qubits: it rather encodes only the possibilities
available for the extraction of information from them.

Two further algorithms

1. Bernstein-Vazirani algorithm

2. Simon’s algorithm, linking to the next lecture on the quantum
Fourier transform and the hidden subgroup problem.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm

The problem
Let w be an unknown non-negative integer less than 2n and consider a
function f (x) = w · x , where

w · x = w1x1 + w2x2 + · · ·+ wnxn

i.e. the bitwise product of x and z , modulo 2.

How many times one has to call f to determine the value of the integer
w?

• Classically, n times: the n values w · 2m, for 0 ≤ m < n.

• In a quantum computer a single invocation is enough, regardless of
the number n of bits.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm

• Re-use the Deutsch-Joza circuit

• Superposition

H⊗n|x〉 =
1√
2n

1∑
yn=0

· · ·
1∑

y1=0

(−1)
∑n

j=1 xjyj |yn〉 · · · |y1〉

=
1√
2n

2n−1∑
y=0

(−1)x·y |y〉n

cf

H |x〉 =
1√
2
(|0〉+ (−1)x |1〉) =

1√
2

1∑
y=0

(−1)xy |y〉

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm

Putting everything together,

(H⊗n ⊗ H)Uf (H
⊗n ⊗ H) |0〉|1〉

= (H⊗n ⊗ H)Uf

(
1√
2n

2n−1∑
x=0

|x〉

)
1√
2
(|0〉− |1〉)

=
1√
2n

H⊗n

(
2n−1∑
x=0

(−1)f (x)|x〉

)
H

(
1√
2
(|0〉− |1〉)

)

=
1

2n

2n−1∑
x=0

2n−1∑
y=o

(−1)f (x)+x·y |y〉|1〉

= |w〉|1〉

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm: another explanation

Some oracles can be implemented by simple circuits.

• In this case the action of Uf on the computational basis is to flip
the 1 qubit target register once, whenever a bit of x and the
corresponding bit of w are both 1.

• Put one CNOT for each nonzero bit of w , controlled by the qubit
representing the corresponding bit of x .

• Their combined effect on every computational basis state is
precisely that of Uf .

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm: another explanation

Example of the encoding for w = 11001

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm: another explanation

Enveloping Uf into the algorithm

The effect is to convert every CNOTgate in the equivalent representation
of Uf from Cij to

Cji = (HiHj)Cij(HiHj)

reversing the target and control qubits.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm: another explanation

Actually,

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The Bernstein-Vazirani algorithm: another explanation

Thus

• After the reversal, the target register controls every one of the
CNOT gates, and since the state of the target register is |1〉, every
one of the NOT operators acts.

• That action flips just those qubits of the control register for which
the corresponding bit of w is 1.

• Since the control register starts in the state |0〉 , this changes the
state of each qubit of the control to |1〉, iff it corresponds to a
nonzero bit of w .

• Thus, in the end, the state of the input register changes from |0〉 to
|w〉.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Simon’s algorithm

The problem
Let f : 2n −→ 2n be such that for some s ∈ 2n,

f (x) = f (y) iff x = y or x = y ⊕ s

Find s.

Equivalent formulation as a period-finding problem
Determine the period s of a function f periodic under ⊕:

f (x ⊕ s) = f (x)

Note that f is bijective if s = 0 (because x ⊕ y = 0 iff x = y), and
two-to-one otherwise (because, for a given s there is only a pair of values
x , y such that x ⊕ y = s).

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Simon’s algorithm, classically

Compute f for sequence of values until finding a value xj such that
f (xj) = f (xi) for a previous xi . Then

s = xj ⊕ xi

• At any previous stage, if this procedure has picked m different
values of x , then one concludes that s 6= xj ⊕ xi for all such values.

• Thus, at most
1

2
m(m − 1)

possible values for s have been discarded (vs 2n − 1 possible values
for s).

• The procedure is unlike to succeed until m becomes of the order of√
2n — the execution time grows exponentially with the number of

bits n.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Going quantum

Reuse the circuit from the Deutsch-Joza algorithm but expand both
registers to n qubits

The circuit

where
Uf = |x〉|c〉 7→ |x〉|c ⊕ f (x)〉

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Going quantum

The oracle maps

1√
2n

∑
x∈2n

|x〉|0〉 to
1√
2n

∑
x∈2n

|x〉|f (x)〉

because 0⊕ x = x .

A measurement of the target register choose randomly one of the 2n−1

possible outcomes of f as f gives the same output for x and x ⊕ s, to 2n

possible inputs correspond 2n−1 possible outcomes

This measurement is not very useful (why?).

Note, however, if f (k) was measured, the control register contains
superposition

1√
2
(|k〉+ |k ⊕ s〉)

as they are the unique values yielding f (k)

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Basic insight: the effect of H⊗n

Recall

H |x〉 =
1√
2

∑
z∈2

(−1)xz |z〉

which extends to a n-qubit as follows

H⊗n|x〉 = H |x1〉H |x2〉 · · ·H |xn〉

=
1√
2

∑
z1∈2n

(−1)x1z1 |z1〉 +
1√
2

∑
z2∈2n

(−1)x2z2 |z〉 · · · 1√
2

∑
zn∈2n

(−1)xnzn |zn〉

=
1√
2n

∑
z1,z2,··· ,zn∈2n

(−1)x1z1+x2z2+···+xnzn |z1z2 · · · zn〉

=
1√
2n

∑
z∈2n

(−1)x·z |z〉

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Basic insight: the effect of H⊗n

Consider now a particular case: applying H⊗n to a superposition of two
basis states, e.g. |0〉 and |s〉:

H⊗n
(

1√
2
|0〉+ 1√

2
|s〉
)

=
1√

2n+1

∑
z∈2n

|z〉 + 1√
2n+1

∑
z∈2n

(−1)s·z |z〉

=
1√

2n+1

∑
z∈2n

((1 + (−1)s·z)|z〉

• s · z = 1 ⇒ basis state |z〉 vanishes (because 1 + (−1)1 = 0)

• s · z = 0 ⇒: basis state |z〉 is kept with amplitude 2√
2n+1

= 1√
2n−1

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Basic insight: the effect of H⊗n

H⊗n
(

1√
2
|0〉+ 1√

2
|s〉
)

=
1√

2n−1

∑
z∈{x∈2n | s·z=0}

|z〉

=
1√

2n−1

∑
z∈S⊥

|z〉

S⊥, for S = {0, s} is the orthogonal complement of subspace S , with
dim(S⊥) = n − 1
(because dim(S) = 1, as S is the subspace generated by s).

Recall that for a subspace F of V , F⊥ = {v ∈ V | ∀x∈F . x .v = 0}

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Basic insight: the effect of H⊗n

In general,

H⊗n
(

1√
2
|x〉+ 1√

2
|y〉
)

=
1√

2n+1

∑
z∈2n

(−1)x·z |z〉 + 1√
2n+1

∑
z∈2n

(−1)y ·z |z〉

=
1√

2n+1

∑
z∈2n

((−1)x·z + (−1)y ·z)︸ ︷︷ ︸
(?)

|z〉

=
1√

2n−1

∑
z∈{0,x⊕y}⊥

(−1)x·z |z〉

because expression (?) yields 0 whenever x ⊕ y = 1.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Putting everything together

Given the initial state 1√
2n

∑
x∈2n |x〉|0〉, the oracle produces

1√
2n

∑
2n

|x〉|f (x)〉

which, as seen above, can be rewritten as

1√
2n−1

∑
x∈I

1√
2
(|x〉+ |x ⊕ s〉)|f (x)〉

because 2n can be partitioned into 2n−1 sets of strings {x , x ⊕ s}.
Set I is composed of one representative of each such set.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Note

Technically each pair of strings is a coset of the subgroup S = {0, s}.

Recall: coset
The coset of a subgroup S of a group (G , .) wrt g ∈ G is

gS = {g .s | s ∈ S}

In this case the vector space (Z2)
n, whose elements are n-tuples over 2,

with dimension n, forms a group ((Z2)
n,⊕), thus,

xS = {x ⊕ 0, x ⊕ s}

Question
Why are there only 2n−1 cosets for this group?

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Putting everything together

Applying H⊗n to the control register yields a uniform superposition of
elements of S⊥:

H⊗n
(

1√
2
(|x〉+ |x ⊕ s〉)

)
=

1√
2n−1

∑
z∈S⊥

(−1)x·z |z〉

Such a measurement returns one such z with probability 1
2n−1 .

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Putting everything together

Repeating this procedure until n linearly independent values
{z1, z2. · · · , zn−1} over (Z2)

n are found, entails the possibility of solving
the set of equations:

z1 · s = 0

z2 · s = 0

...

zn−1 · s = 0

The only solutions to this set of equations are 0 and s, so, finally, s is
found.

Note that the span of {z1, z2. · · · , zn−1} is S⊥.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The algorithm

1. Prepare the initial state 1√
2n

∑
x∈2n |x〉|0〉 and make i := 1

2. Apply the oracle Uf to obtain the state

1√
2n

∑
x∈2n

|x〉|f (x)〉

which can be re-written as

1√
2n−1

∑
x∈I

1√
2
(|x〉+ |x ⊕ s〉)|f (x)〉

3. Apply H⊗n to the control register yielding a uniform superposition
of elements of S⊥.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The algorithm

4. Measure the first register and record the value observed zi , which is
a randomly selected element of S⊥.

5. If the dimension of the span of {z1, z2, · · · , zi } is less than n − 1,
increment i and to go step 2; else proceed.

6. Then
span{z1, z2, · · · , zi } = S⊥

Thus, s will be the unique non-zero solution of

Z s = 0

where Z is the matrix whose line i corresponds to vector zi .
Compute this system of linear equations to find s by Gaussian
elimination modulo 2 (in time polynomial in n).

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Can we do better?

The algorithm computes a solution in polynomial expected running time

• In each iteration i the probability of zi being linearly independent of
the values previously computed is at least 0.5.

• Thus, after 2(n − 1) iterations the probability of having found a
basis for S⊥ is also at least 0.5

• The corresponding equations can be solved to find s in O(n2)

• Thus, with high likelihood s is expected to be found with O(n − 1)
calls to the oracle, followed by O(n2) steps to solve the equations.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Can we do better?

Can we obtain a polynomial worst-case running time?

There is a basic result on analysing probabilistic algorithms stating that
any algorithm that terminates with an expected number of queries equal
to n will terminate after at most 3nqueries, with probability at least 2

3 .

This means that one may abandon the iterative process if a solution is
not found in 3n iterations and find the solution with probability 2

3 .

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The revised algorithm

5. If i ≤ 3n increment i and to go step 2; else proceed.

6. Solve
Z s = 0

Compute this system of linear equations and let s1, s2, ... sn be the
generators of the solution space.

7. If the solution space has dimension 1, spanned by s1, output s = s1,
else fail.

This solves Simon’s problem with probability 2
3 using 3n evaluations of f .

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Generalised Simon’s algorithm

The problem

Let f : 2n −→ X , for some X finite, be such that,

f (x) = f (y) iff x−y ∈ S , for some subspace S ≤ (Z2)
n, of dimension m

Find a basis s1, s2, · · · sm for S .

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Generalised Simon’s algorithm

• If S = {0, x1, · · · , x2m−1} is a subspace of dimension m of Zn
2 ,

2n can be decomposed into 2n−m cosets of the form
y , y ⊕ x1, y ⊕ x2, · · · , y ⊕ x2m−1 (abbreviated to y + S)

• Step 3 yields∑
x∈2n

|x〉|f (x)〉 =
1√

2n−m

∑
y∈I

|y + S〉|f (x)〉

where I be a subset of 2n consisting of one representative of
each 2n−m disjoint cosets, and

|y + S〉 =
∑
s∈S

1√
2m

|f (x)〉

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

Generalised Simon’s algorithm

• In step 4 the first register is left in a state of the form |y + S〉
for a random y .

• After applying the Hadamard transformation, the first register
contains a uniform superposition of elements of S⊥ and its
measurement yields a value wi sampled uniformly at random
from S⊥.

leading to the revised algorithm:

5. If the dimension of the span of {z1, z2, · · · , zi } is less than
n −m, increment i and to go step 2; else proceed.

6. Compute the system of linear equations

Z s = 0

and let s1, s2, · · · , sm be the generators of the solution space.
They form the envisaged basis.

Recapping The Bernstein-Vazirani algorithm Simon’s algorithm

The hidden subgroup problem

The group S is often called the hidden subgroup.

Simon’s algorithm is an instance of a much general scheme,
leading to exponential advantage, that will be studied next.

	Recapping
	The Bernstein-Vazirani algorithm
	Simon's algorithm

