Quantum Computation

(Lecture 6)

Luís Soares Barbosa

Universidade do Minho

(日) (部) (書) (書)

- 2

Quantum Computing Course Unit

Universidade do Minho, 2021

Quantum Search

Grover iterator

Effort

Going generic

Amplitude amplification

Search problems

▲ロト ▲理 ▶ ▲ ヨ ▶ ▲ ヨ ■ ● の Q (?)

Search problems

Search problem

- Search space: unstructured / unsorted
- Asset: a tool to efficiently recognise a solution

Example: Searching in a sorted vs unsorted database

- find a name in a telephone directory
- find a phone number in a telephone directory

Search problems

Note that that a procedure to recognise a solution does not need to rely on a previous knowledge of it.

Example: password recognition

- f(x) = 1 iff x = 123456789 (*f* knows the password)
- f(x) = 1 iff hash(x) = c9b93f3f0682250b6cf8331b7ee68fd8
 (f recognises a correct password, but does not know it as inverting a hash function is, in general, very hard.)

Search problems

A typical formulation

Given a function $f: 2^n (= N) \longrightarrow 2$ such that there exists a unique number, encoded by a binary string *a*, st

$$f(x) = \begin{cases} 1 & \Leftarrow x = a \\ 0 & \Leftarrow x \neq a, \end{cases}$$

determine a.

A classical solution

- 0 evaluations of f: probability of success: $\frac{1}{2^n}$
- 1 evaluation of f: probability of success: ²/_{2ⁿ} (choose a solution at random; if test fails choose another.
- 2 evaluations of f: probability of success: ³/_{2ⁿ}.
- k evaluations of f: probability of success: $\frac{k+1}{2^n}$.

 Quantum Search
 Grover iterator
 Effort
 Going ;

Going generic

Amplitude amplification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Search problems

Grover's algorithm (1996): A quadratic speed up

- Worst case for a classic algorithm: 2^n evaluations of f
- Worst case for Grover's algorithm: $\sqrt{2^n}$ evaluations of f

Going generic

Amplitude amplification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An oracle for f

... provides a means to recognize a solution for an input $|v\rangle$:

$$U_f = |v
angle |t
angle \mapsto |v
angle |t \oplus f(v)
angle$$

Thus, preparing the target register with $|0\rangle$,

$$U_f = |v\rangle|0\rangle \mapsto |v\rangle|f(v)\rangle$$

Measuring the target after U_f will return its answer to the given input, as (classically) expected.

Superposition will make the difference to take advantage of a quantum machine.

$$\psi \;=\; rac{1}{\sqrt{N}}\sum_{x=0}^{N-1} \ket{x}$$

 $|\psi\rangle$ can be expressed in terms of two states separating the solution states and the rest:

$$|a
angle$$
 and $|r
angle = rac{1}{\sqrt{N-1}}\sum_{x\in N\setminus\{a\}}|x
angle$

which form a basis for a 2-dimensional subspace of the original N-dimensional space.

Thus,

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \underbrace{\frac{1}{\sqrt{N}}}_{\text{solution}} + \underbrace{\sqrt{\frac{N-1}{N}}}_{\text{the rest}} |r\rangle$$

・ロト・日本・日本・日本・日本・日本

An oracle for f

If the target qubit is set to $|-\rangle$, the effect of U_f is just

$$U_f = |x\rangle|-
angle \mapsto (-1)^{f(x)}|x
angle|-
angle$$

Since $|-\rangle (= \frac{|0\rangle - |1\rangle}{\sqrt{2}})$ is an eigenvector of X, this corresponds to a single qubit oracle which encodes the answer of U_f as a phase shift:

$$V = |x\rangle \mapsto (-1)^{f(x)}|x\rangle$$

(i.e. $V|a\rangle = -|a\rangle$ and $V|x\rangle = |x\rangle$ (for $x \neq a$))

which can be expressed as

$$V = \sum_{x \neq a} |x\rangle \langle x| - |a\rangle \langle a| = I - 2|a\rangle \langle a|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

An oracle for f

$$V = \sum_{x \neq a} |x\rangle \langle x| - |a\rangle \langle a| = I - 2|a\rangle \langle a|$$

The circuit

V identifies the solution but does not allow for an observer to retrieve it because the square of the amplitudes for any value is always $\frac{1}{N}$.

This entails the need for a mechanism to boost the probability of retrieving the solution.

$$P = |x\rangle \mapsto (-1)^{\delta_{x,0}} |x\rangle$$
$$= |0\rangle\langle 0| + (-1)\sum_{x\neq 0} |x\rangle\langle x|$$
$$= |0\rangle\langle 0| + (-1)(I - |0\rangle\langle 0|)$$
$$= 2|0\rangle\langle 0| - I$$

P applies a phase shift to all vectors in the subspace spanned by all the basis states $|x\rangle$, for $x \neq 0$, i.e. all states orthogonal to $|00 \cdots 0\rangle$.

Prepare a state in uniform superposition:

$$|\psi\rangle = H^{\otimes n}|00\cdots 0\rangle = |+\rangle^{\otimes n} = \frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x\rangle$$

and define an operator $W = H^{\otimes n} P H^{\otimes n}$, which

•
$$W|\psi\rangle = |\psi\rangle$$
,

W|φ⟩ = -|φ⟩, for any vector |φ⟩ in the subspace orthogonal to |ψ⟩ (i.e. spanned by the basis vectors H|x⟩ for x ≠ 0).

W applies a phase shift of -1 to all vectors in the subspace orthogonal to $|\psi\rangle$.

Then,

 $W = H^{\otimes n} P H^{\otimes n}$ = $H^{\otimes n} (2|0\rangle \langle 0| - I) H^{\otimes n}$ = $2(H^{\otimes n}|0\rangle \langle 0|H^{\otimes n}) - H^{\otimes n} I H^{\otimes n}$ = $2|\psi\rangle \langle \psi| - I$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The effect of W: to invert about the average

$$W\left(\sum_{k} \alpha_{k} |k\rangle\right) = \left(2\left(\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle \frac{1}{\sqrt{N}} \sum_{y=0}^{N-1} \langle y|\right) - I\right) \sum_{k} \alpha_{k} |k\rangle$$
$$= \left(2\left(\frac{1}{N} \sum_{x=0}^{N-1} |x\rangle \sum_{y=0}^{N-1} \langle y|\right) - I\right) \sum_{k} \alpha_{k} |k\rangle$$
$$= 2\left(\frac{1}{N} \sum_{x,y,k} \alpha_{k} |x\rangle \langle y|k\rangle\right) - \sum_{k} \alpha_{k} |k\rangle$$
$$= 2\left(\frac{1}{N} \sum_{x,y,k} \alpha_{k} \sum_{x} |x\rangle\right) - \sum_{k} \alpha_{k} |k\rangle$$
$$= 2\alpha \sum_{k} |k\rangle - \sum_{k} \alpha_{k} |k\rangle$$
$$= \sum_{k} (2\alpha - \alpha_{k}) |k\rangle$$

The effect of W: to invert about the average

The effect of W is to transform the amplitude of each state so that it is as far above the average as it was below the average prior to its application, and vice-versa:

$$\alpha_k \mapsto 2\alpha - \alpha_k$$

W inverts and boosts the "right" amplitude; slightly reduces the others.

▲□ → ▲ 三 → ▲ 三 → のへぐ

Invert about the average: Example

Let $N = 2^2$ and suppose the solution *a* is encoded as the bit string 01. The algorithm starts with a uniform superposition

$$|H^{\otimes 3}|0
angle = rac{1}{2}\sum_{k=0}^{3}|k
angle$$

which the oracle turns into

$$\frac{1}{2}|00\rangle-\frac{1}{2}|01\rangle+\frac{1}{2}|10\rangle+\frac{1}{2}|11\rangle$$

The effect of inversion about the average is

$$2 \underbrace{\begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}}_{\left[\frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix}} - \underbrace{\begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}}_{\left[\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Measuring returns the solution with probability 1!

・ロト ・四ト ・ヨト ・ヨト

æ

Amplitude amplification

The Grover iterator

$$G = WV$$

= $H^{\otimes n} P H^{\otimes n} V$
= $(2|\psi\rangle\langle\psi| - I) (I - 2|a\rangle\langle a|)$

The Grover circuit

Example: N = 8, a = 3

Starting point:

After the oracle

Quantum Search

Amplitude amplification

Example: N = 8, a = 3

Inversion about the average

$$\begin{split} (2|\psi\rangle\langle\psi|-I)\left(|\psi\rangle-\frac{2}{2\sqrt{2}}|011\rangle\right)\\ &=2|\psi\rangle\langle\psi|\psi\rangle-|\psi\rangle-\frac{2}{\sqrt{2}}|\phi\rangle\langle\psi|011\rangle+\frac{1}{\sqrt{2}}|011\rangle\\ &=2|\psi\rangle\langle\psi|\psi\rangle-|\psi\rangle-\frac{2}{\sqrt{2}}\frac{1}{2\sqrt{2}}|\phi\rangle+\frac{1}{\sqrt{2}}|011\rangle\\ &=|\psi\rangle-\frac{1}{2}|\psi\rangle+\frac{1}{\sqrt{2}}|011\rangle\\ &=\frac{1}{2}|\psi\rangle+\frac{1}{\sqrt{2}}|011\rangle \end{split}$$

As $|\psi
angle=rac{1}{2\sqrt{2}}\sum_{k=0}^{7}|k
angle$. we end up with

$$\frac{1}{2}\left(\frac{1}{2\sqrt{2}}\sum_{k=0}^{7}|k\rangle\right) + \frac{1}{\sqrt{2}}|011\rangle = \frac{1}{4\sqrt{2}}\sum_{k=0,k\neq3}^{7}|k\rangle + \frac{5}{4\sqrt{2}}|011\rangle$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example: N = 8, a = 3

Making a second iteration yields

and the probability of measuring the state corresponding to the solution is

$$\left|\frac{11}{8\sqrt{2}}\right|^2 = \frac{121}{128} \approx 94,5\%$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

A geometric perspective on G

Initial state:
$$|\psi\rangle = \frac{1}{\sqrt{N}}|a\rangle + \sqrt{\frac{N-1}{N}}|r\rangle$$

The repeated application of *G* leaves the system in the 2-dimensional subspace of the original *N*-dimensional space, spanned by $|a\rangle$ and $|r\rangle$. Another basis is given by $|\psi\rangle$ and the state orthogonal to $|\psi\rangle$:

$$|\overline{\psi}
angle \; = \; -rac{1}{\sqrt{N}}|s
angle \; + \; \sqrt{rac{N-1}{N}}|r
angle$$

Define an angle θ st sin $\theta = \frac{1}{\sqrt{N}}$ (and, of course, $\cos \theta = \sqrt{\frac{N-1}{N}}$), and express both basis as

$$\begin{aligned} |\psi\rangle &= \sin \theta |a\rangle + \cos \theta |r\rangle \quad |\overline{\psi}\rangle &= \cos \theta |a\rangle - \sin \theta |r\rangle \\ |a\rangle &= \sin \theta |\psi\rangle + \cos \theta |\overline{\psi}\rangle \quad |r\rangle &= \cos \theta |\psi\rangle - \sin \theta |\overline{\psi}\rangle \end{aligned}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A geometric perspective on G

- G has two components:
 - V which applies a phase shift to $|a\rangle$: reflection over $|r\rangle$.
 - W which applies a phase shift to all vectors in the subspace orthogonal to |ψ⟩: reflection over |ψ⟩.

Thus, one should express the action of V in the basis $|\psi\rangle, |\overline{\psi}\rangle$ to perform afterwards the second reflection:

$$\begin{split} V|\psi\rangle &= -\sin\theta|a\rangle + \cos\theta|r\rangle \\ &= -\sin\theta(\sin\theta|\psi\rangle + \cos\theta|\overline{\psi}\rangle) + \cos\theta(\cos\theta|\psi\rangle - \sin\theta|\overline{\psi}\rangle) \\ &= -\sin^2\theta|\psi\rangle - \sin\theta\cos\theta|\overline{\psi}\rangle + \cos^2\theta|\psi\rangle - \cos\theta\sin\theta|\overline{\psi}\rangle \\ &= (-\sin^2\theta + \cos^2\theta)|\psi\rangle - 2\sin\theta\cos\theta|\overline{\psi}\rangle \\ &= \cos2\theta|\psi\rangle - \sin2\theta|\overline{\psi}\rangle \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Amplitude amplification

A geometric perspective on G

Then, the second reflection over $|\psi\rangle$ yields the effect of the Grover iterator:

$$|\mathbf{G}|\psi
angle \;=\; \cos 2 heta |\psi
angle + \sin 2 heta |\overline{\psi}
angle$$

which boils down to 2θ rotation:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What's behind the scenes?

- The key is the selective shifting of the phase of one state of a quantum system, one that satisfies some condition, at each iteration.
- Performing a phase shift of π is equivalent to multiplying the amplitude of that state by -1: the amplitude for that state changes, but the probability of being in that state remains the same
- Subsequent transformations take advantage of that difference in amplitude to single out that state and increase the associated probability.
- This would not be possible if the amplitudes were probabilities, not holding extra information regarding the phase of the state in addition to the probability it's a quantum feature.

How many times should G be applied?

From this picture, we may also conclude that

• the angular distance to cover is

$$rac{\pi}{2} - heta = rac{\pi}{2} - \arcsin\left(rac{1}{\sqrt{N}}
ight)$$

(日)、

э

How many times should G be applied?

Thus, the ideal number of iterations is

$$t = \left\lfloor \frac{\frac{\pi}{2} - \arcsin \frac{1}{\sqrt{N}}}{2\theta} \right\rfloor$$

A lower bound for θ gives an upper bound for t— for N large $\theta \approx \sin \theta = \frac{1}{\sqrt{N}}$. Thus,

$$t \approx rac{rac{\pi\sqrt{N}}{2\sqrt{N}}}{rac{2}{\sqrt{N}}} = rac{\pi}{4}\sqrt{N}$$

So, *G* applied *t* times leaves the system within an angle θ of $|a\rangle$. Then, a measurement in the computational basis yields the correct solution with probability

$$\|\langle a|G^t|\psi\rangle\| \ge \cos^2\theta = 1 - \sin^2\theta = \frac{N-1}{N}$$

which, for large N, is very close to 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

How many times should G be applied?

For an alternative computation, recall

$$|\mathbf{G}|\psi
angle \ = \ \cos 2 heta|\psi
angle + \sin 2 heta|\overline{\psi}
angle$$

By induction, after k iterations,

$$G^{k}|\psi\rangle = \cos(2k\theta)|\psi\rangle + \sin(2k\theta)|\overline{\psi}\rangle$$

= $\sin(2k+1)\theta|a\rangle + \cos(2k+1)\theta|r\rangle$

Thus, to maximize the probability of obtaining $|a\rangle$, k is selected st

$$\sin((2k+1)\theta) \approx 1$$
 i.e. $(2k+1)\theta \approx \frac{\pi}{2}$

which leads to

$$k \approx \frac{\pi}{4\theta} - \frac{1}{2} \approx \frac{\pi}{4}\sqrt{N} \approx t$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quantum Search

Amplitude amplification

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Grover's algorithm $(O(\sqrt{N}))$

- Prepare the initial state: $|0
 angle^{\otimes n}|1
 angle$
- Apply $H^{\otimes n} \otimes H$ to yield $\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle |-\rangle$
- Apply the Grover iterator G to $\frac{1}{\sqrt{N}}\sum_{x=0}^{N-1}|x\rangle|-\rangle$, $t \approx \frac{\pi}{4}\sqrt{N}$ times, leading approximately to state $|a\rangle|-\rangle$
- Measure the first n qubits to retrieve $|a\rangle$

Quantum Search Grover iterator Effort Going generic Amplitude amplification

Multiple solutions

There M (out of $2^n = N$) input strings evaluating to 0 by f

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \underbrace{\sqrt{\frac{M}{N}} |s\rangle}_{\text{solution}} + \underbrace{\sqrt{\frac{N-M}{N}} |r\rangle}_{\text{the rest}}$$

where

$$|s
angle = rac{1}{\sqrt{M}}\sum_{x \text{ solution}} |x
angle \text{ and } |r
angle = rac{1}{\sqrt{N-M}}\sum_{x \text{ no solution}} |x
angle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantum Search

Grover iterator

Effor

Going generic

Amplitude amplification

Multiple solutions

$$t = \left\lfloor \frac{\frac{\pi}{2} - \arcsin\sqrt{\frac{M}{N}}}{2\theta} \right\rfloor$$

which, for N large, $M \ll N$ (thus $\theta \approx \sin \theta$), yields

$$t \approx \frac{\pi}{4}\sqrt{\frac{N}{M}}$$

The probability to retrieve a correct solution is

$$\|\langle s|G^t|\psi\rangle\| \ge \cos^2\theta = 1-\sin^2\theta = \frac{N-M}{N}$$

which, for $M = \frac{N}{2}$ yields $\frac{1}{2}$, but for $M \ll N$, is again close to 1.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Multiple solutions

Computing the effect of $G: 2\theta$

$$\sin 2\theta = 2\sqrt{\frac{N-M}{N}} = 2\frac{\sqrt{M(N-M)}}{N}$$
$$2\theta = \arcsin\left(2\frac{\sqrt{M(N-M)}}{N}\right)$$

<i>M</i> (out of 100)	arcsin θ
0	0
1	0.198
20	0.8
40	0.979
50	1
60	0.979
80	0.8
99	0.198
М	0

Going generic

Amplitude amplification

Multiple solutions

Surprisingly, the rotation in each iteration decreases from $M = \frac{N}{2}$ to N, and the number of iterations consequently increases, although one would expect to be easier to find a correct solution if their number increases!

Solution

To double the number of elements in the search space, by adding N extra elements, none of which being a solution.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The technique: Amplitude amplification

Grover's algorithm made use of

 $H^{\otimes n}|00\cdots 0\rangle$

to prepare a uniform superposition of potential solutions.

In general, one may resort to any module K to map the solution space to any superposition of guesses, plus some extra qubits to be used as draft paper:

$$\frac{K}{00\cdots 0} = \sum_{x} \alpha_{x} |x\rangle |draft(x)\rangle$$

The technique: Amplitude amplification

$$|\psi\rangle \;=\; \sum_{x \text{ solution}} \alpha_x |x\rangle \, |\mathsf{draft}(x)\rangle \;\; + \sum_{x \text{ no solution}} \alpha_x |x\rangle \, |\mathsf{draft}(x)\rangle$$

yielding the following probabilities:

$$p_s = \sum_{x ext{ solution}} \| lpha_x \|^2 \quad ext{and} \quad p_{ns} = \sum_{x ext{ no solution}} \| lpha_x \|^2 = 1 - p_s$$

Of course, amplification has no use if $p_s \in \{0, 1\}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The technique: Amplitude amplification

Otherwise (0 $< p_s < 1$), the amplitudes of solution inputs should be amplified. First, express

$$|\psi
angle \;=\; \sqrt{
ho_{s}} |\psi_{s}
angle \;+\; \sqrt{
ho_{ns}} |\psi_{ns}
angle$$

for the normalised components

$$\begin{split} |\psi_s\rangle \ &=\ \sum_{x \text{ solution }} \frac{\alpha_x}{\sqrt{\rho_s}} |x\rangle \, |\text{draft}(x)\rangle \\ |\psi_{ns}\rangle \ &=\ \sum_{x \text{ solution }} \frac{\alpha_x}{\sqrt{\rho_{ns}}} |x\rangle \, |\text{draft}(x)\rangle \end{split}$$

which rewrites to

$$|\psi\rangle \;=\; \sin\theta |\psi_s\rangle \;+\; \cos\theta |\psi_{\textit{ns}}\rangle$$

for $\theta \in \{0, \frac{\pi}{2}\}$ such that $\sin^2 \theta = p_s$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The technique: Amplitude amplification

A generic search iterator is built as

$$S = KPK^{-1}V = W_KV$$

where

$$egin{array}{lll} W_{\cal K}|\psi
angle &= |\psi
angle \\ W_{\cal K}|\phi
angle &= -|\phi
angle & {
m for all states orthogonal to }|\psi
angle \end{array}$$

The sets $\{|\psi_s\rangle, |\psi_{ns}\rangle\}$ and $\{|\psi\rangle, |\overline{\psi}\rangle\}$ are bases for the relevant 2-dimensional subspace.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The technique: Amplitude amplification

As expected, starting in $|\psi\rangle,$ the oracle produces

$$-\sin\theta|\psi_s
angle + \cos\theta|\psi_{ns}
angle = \cos(2\theta)|\psi
angle - \sin(2\theta)|\overline{\psi}
angle$$

which, followed by the amplifier, yields

 $\cos(2\theta)|\psi
angle+\sin(2\theta)|\overline{\psi}
angle$

i.e. the effect of iterator S is

$$| 0 \rangle = \cos(2 heta) | \psi
angle + \sin(2 heta) | \overline{\psi}
angle$$

which can be expressed in the basis $\{|\psi_s\rangle,|\psi_{\textit{ns}}\rangle\}$ as

$$|\Psi\rangle = \sin(3\theta)|\psi_s\rangle + \cos(3\theta)|\psi_{ns}\rangle$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The technique: Amplitude amplification

The repeated application of ${\bf S}$ a total of k times rotates the initial state $|\psi\rangle$ to

$$|\mathbf{S}^{k}|\psi\rangle = \sin((2k+1)\theta)|\psi_{s}\rangle + \cos((2k+1)\theta)|\psi_{ns}\rangle$$

For the correct number of iterations, this procedure reaches a state such that a measurement will return an element of the subspace spanned by $|\psi_s\rangle$ with a probability close to 1.

The technique: Amplitude amplification

As before, to get that high probability, the smallest value for k one can choose is such that

$$(2k+1)\theta \approx \frac{\pi}{2}$$

For a small θ , as

$$\sin \theta = \sqrt{p_s} \approx \theta$$

the magnitude of the right number of iterations is

$$\mathcal{O}\left(\sqrt{\frac{1}{\theta}}\right)$$

because

$$(2k+1)\sqrt{p_s} = \theta \Leftrightarrow k = \frac{\pi}{4\sqrt{p_s}} - \frac{1}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The algorithm requires that one knows in advance how many times iterator S is to be applied:

- For K = H (uniform sampling the input) this boils down to know the number of solutions of the search problem.
- For a generic K this amounts to know the probability with which K guesses a solution to the problem, i.e. sin(θ).

To see ...

- blind search
- estimate the amplitude with which K maps $|00\cdots0\rangle$ to the subspace of solutions