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Search problems

Search problem

• Search space: unstructured / unsorted

• Asset: a tool to efficiently recognise a solution

Example: Searching in a sorted vs unsorted database

• find a name in a telephone directory

• find a phone number in a telephone directory
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Search problems

Note that that a procedure to recognise a solution does not need to rely
on a previous knowledge of it.

Example: password recognition

• f (x) = 1 iff x = 123456789 (f knows the password)

• f (x) = 1 iff hash(x) = c9b93f3f0682250b6cf8331b7ee68fd8
(f recognises a correct password, but does not know it as inverting
a hash function is, in general, very hard.)
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Search problems

A typical formulation
Given a function f : 2n(= N) −→ 2 such that there exists a unique
number, encoded by a binary string a, st

f (x) =

{
1 ⇐ x = a

0 ⇐ x 6= a,

determine a.

A classical solution

• 0 evaluations of f : probability of success: 1
2n

• 1 evaluation of f : probability of success: 2
2n

(choose a solution at random; if test fails choose another.

• 2 evaluations of f : probability of success: 3
2n .

• k evaluations of f : probability of success: k+1
2n .
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Search problems

Grover’s algorithm (1996): A quadratic speed up

• Worst case for a classic algorithm: 2n evaluations of f

• Worst case for Grover’s algorithm:
√

2n evaluations of f
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An oracle for f

... provides a means to recognize a solution for an input |v〉:

Uf = |v〉|t〉 7→ |v〉|t ⊕ f (v)〉

Thus, preparing the target register with |0〉,

Uf = |v〉|0〉 7→ |v〉|f (v)〉

Measuring the target after Uf will return its answer to the given input, as
(classically) expected.

Superposition will make the difference to take advantage of a quantum
machine.

ψ =
1√
N

N−1∑
x=0

|x〉
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An oracle for f

|ψ〉 can be expressed in terms of two states separating the solution states
and the rest:

|a〉 and |r〉 = 1√
N − 1

∑
x∈N\{a}

|x〉

which form a basis for a 2-dimensional subspace of the original
N-dimensional space.

Thus,

|ψ〉 =
1√
N

N−1∑
x=0

|x〉 =
1√
N
|a〉︸ ︷︷ ︸

solution

+

√
N − 1

N
|r〉︸ ︷︷ ︸

the rest
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An oracle for f

If the target qubit is set to |−〉, the effect of Uf is just

Uf = |x〉|−〉 7→ (−1)f (x)|x〉|−〉

Since |−〉(= |0〉−|1〉√
2

) is an eigenvector of X , this corresponds to a single

qubit oracle which encodes the answer of Uf as a phase shift:

V = |x〉 7→ (−1)f (x)|x〉

(i.e. V |a〉 = −|a〉 and V |x〉 = |x〉 (for x 6= a) )

which can be expressed as

V =
∑
x 6=a

|x〉〈x |− |a〉〈a| = I − 2|a〉〈a|
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An oracle for f

V =
∑
x 6=a

|x〉〈x |− |a〉〈a| = I − 2|a〉〈a|

The circuit

V identifies the solution but does not allow for an observer to retrieve it
because the square of the amplitudes for any value is always 1

N .
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An amplifier

This entails the need for a mechanism to boost the probability of
retrieving the solution.

P = |x〉 7→ (−1)δx,0 |x〉

= |0〉〈0|+ (−1)
∑
x 6=0

|x〉〈x |

= |0〉〈0|+ (−1)(I − |0〉〈0|)
= 2|0〉〈0|− I

P applies a phase shift to all vectors in the subspace spanned by all the
basis states |x〉, for x 6= 0, i.e. all states orthogonal to |00 · · · 0〉.
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An amplifier

Prepare a state in uniform superposition:

|ψ〉 = H⊗n|00 · · · 0〉 = |+〉⊗n =
1√
N

N−1∑
x=0

|x〉

and define an operator W = H⊗n P H⊗n, which

• W |ψ〉 = |ψ〉,

• W |φ〉 = −|φ〉, for any vector |φ〉 in the subspace orthogonal to |ψ〉
(i.e. spanned by the basis vectors H |x〉 for x 6= 0).

W applies a phase shift of −1 to all vectors in the subspace orthogonal to
|ψ〉.
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An amplifier

Then,

W = H⊗n P H⊗n

= H⊗n (2|0〉〈0|− I )H⊗n

= 2(H⊗n|0〉〈0|H⊗n) − H⊗n I H⊗n

= 2|ψ〉〈ψ|− I
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The effect of W : to invert about the average

W (
∑
k

αk |k〉 ) = (2 (
1√
N

N−1∑
x=0

|x〉 1√
N

N−1∑
y=0

〈y | ) − I )
∑
k

αk |k〉

= (2 (
1

N

N−1∑
x=0

|x〉
N−1∑
y=0

〈y | ) − I )
∑
k

αk |k〉

= 2 (
1

N

∑
x,y,k

αk |x〉〈y |k〉 ) −
∑
k

αk |k〉

= 2 (
1

N

∑
k

αk︸ ︷︷ ︸
α - mean

∑
x

|x〉 ) −
∑
k

αk |k〉

= 2α
∑
k

|k〉 −
∑
k

αk |k〉

=
∑
k

(2α− αk)|k〉
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The effect of W : to invert about the average

The effect of W is to transform the amplitude of each state so that it is
as far above the average as it was below the average prior to its
application, and vice-versa:

αk 7→ 2α− αk

W inverts and boosts the “right” amplitude; slightly reduces the others.
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Invert about the average: Example
Let N = 22 and suppose the solution a is encoded as the bit string 01.
The algorithm starts with a uniform superposition

H⊗3|0〉 =
1

2

3∑
k=0

|k〉

which the oracle turns into

1

2
|00〉− 1

2
|01〉+ 1

2
|10〉+ 1

2
|11〉

The effect of inversion about the average is

2

α
∑

k |k〉︷︸︸︷
1
4
1
4
1
4
1
4

 −

∑
k αk |k〉︷ ︸︸ ︷

1
2
− 1

2
1
2
1
2

 =


2
4 − 1

2
2
4 + 1

2
2
4 − 1

2
2
4 − 1

2

 =


0
1
0
0


Measuring returns the solution with probability 1!
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The Grover iterator

G = WV

= H⊗n P H⊗nV

= (2|ψ〉〈ψ|− I ) (I − 2|a〉〈a|)

The Grover circuit
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Example: N = 8, a = 3

Starting point:

After the oracle



Quantum Search Grover iterator Effort Going generic Amplitude amplification

Example: N = 8, a = 3
Inversion about the average

(2|ψ〉〈ψ|− I )

(
|ψ〉− 2

2
√

2
|011〉

)
= 2|ψ〉〈ψ|ψ〉− |ψ〉− 2√

2
|φ〉〈ψ|011〉+ 1√

2
|011〉

= 2|ψ〉〈ψ|ψ〉− |ψ〉− 2√
2

1

2
√

2
|φ〉+ 1√

2
|011〉

= |ψ〉− 1

2
|ψ〉+ 1√

2
|011〉

=
1

2
|ψ〉+ 1√

2
|011〉

As |ψ〉 = 1
2
√

2

∑7
k=0 |k〉. we end up with

1

2

(
1

2
√

2

7∑
k=0

|k〉

)
+

1√
2
|011〉 =

1

4
√

2

7∑
k=0,k 6=3

|k〉+ 5

4
√

2
|011〉
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Example: N = 8, a = 3

Making a second iteration yields

and the probability of measuring the state corresponding to the solution is∣∣∣∣ 11

8
√

2

∣∣∣∣2 =
121

128
≈ 94, 5%
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A geometric perspective on G

Initial state: |ψ〉 = 1√
N
|a〉 +

√
N−1
N |r〉

The repeated application of G leaves the system in the 2-dimensional
subspace of the original N-dimensional space, spanned by |a〉 and |r〉.
Another basis is given by |ψ〉 and the state orthogonal to |ψ〉:

|ψ〉 = −
1√
N
|a〉 +

√
N − 1

N
|r〉

Define an angle θ st sin θ = 1√
N

(and, of course, cos θ =
√

N−1
N ), and

express both basis as

|ψ〉 = sin θ|a〉+ cos θ|r〉 |ψ〉 = cos θ|a〉− sin θ|r〉
|a〉 = sin θ|ψ〉+ cos θ|ψ〉 |r〉 = cos θ|ψ〉− sin θ|ψ〉
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A geometric perspective on G

G has two components:

• V which applies a phase shift to |a〉: reflection over |r〉.

• W which applies a phase shift to all vectors in the subspace
orthogonal to |ψ〉: reflection over |ψ〉.

Thus, one should express the action of V in the basis |ψ〉, |ψ〉 to perform
afterwards the second reflection:

V |ψ〉 = − sin θ|a〉+ cos θ|r〉
= − sin θ(sin θ|ψ〉+ cos θ|ψ〉) + cos θ(cos θ|ψ〉− sin θ|ψ〉)
= − sin2 θ|ψ〉− sin θ cos θ|ψ〉+ cos2 θ|ψ〉− cos θ sin θ|ψ〉
= (− sin2 θ+ cos2 θ)|ψ〉− 2 sin θ cos θ|ψ〉
= cos 2θ|ψ〉− sin 2θ|ψ〉
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A geometric perspective on G
Then, the second reflection over |ψ〉 yields the effect of the Grover
iterator:

G |ψ〉 = cos 2θ|ψ〉+ sin 2θ|ψ〉

which boils down to 2θ rotation:
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What’s behind the scenes?

• The key is the selective shifting of the phase of one state of a
quantum system, one that satisfies some condition, at each
iteration.

• Performing a phase shift of π is equivalent to multiplying the
amplitude of that state by −1: the amplitude for that state
changes, but the probability of being in that state remains the same

• Subsequent transformations take advantage of that difference in
amplitude to single out that state and increase the associated
probability.

• This would not be possible if the amplitudes were probabilities, not
holding extra information regarding the phase of the state in
addition to the probability — it’s a quantum feature.
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How many times should G be applied?

From this picture, we may also conclude that

• the angular distance to cover is

π

2
− θ =

π

2
− arcsin

(
1√
N

)
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How many times should G be applied?

Thus, the ideal number of iterations is

t =

⌊
π
2 − arcsin 1√

N

2θ

⌋

A lower bound for θ gives an upper bound for t
— for N large θ ≈ sin θ = 1√

N
. Thus,

t ≈
π
√
N

2
√
N

2√
N

=
π

4

√
N

So, G applied t times leaves the system within an angle θ of |a〉. Then, a
measurement in the computational basis yields the correct solution with
probability

‖〈a|G t |ψ〉‖ ≥ cos2 θ = 1 − sin2 θ =
N − 1

N

which, for large N, is very close to 1.
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How many times should G be applied?

For an alternative computation, recall

G |ψ〉 = cos 2θ|ψ〉+ sin 2θ|ψ〉

By induction, after k iterations,

G k |ψ〉 = cos(2kθ)|ψ〉+ sin(2kθ)|ψ〉
= sin(2k + 1)θ|a〉+ cos(2k + 1)θ|r〉

Thus, to maximize the probability of obtaining |a〉, k is selected st

sin((2k + 1)θ) ≈ 1 i.e. (2k + 1)θ ≈ π
2

which leads to

k ≈ π

4θ
−

1

2
≈ π

4

√
N ≈ t
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Grover’s algorithm (O(
√
N))

• Prepare the initial state: |0〉⊗n|1〉

• Apply H⊗n ⊗ H to yield 1√
N

∑N−1
x=0 |x〉|−〉

• Apply the Grover iterator G to 1√
N

∑N−1
x=0 |x〉|−〉, t ≈ π

4

√
N times,

leading approximately to state |a〉|−〉

• Measure the first n qubits to retrieve |a〉
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Multiple solutions

There M (out of 2n = N) input strings evaluating to 0 by f

|ψ〉 =
1√
N

N−1∑
x=0

|x〉 =

√
M

N
|s〉︸ ︷︷ ︸

solution

+

√
N −M

N
|r〉︸ ︷︷ ︸

the rest

where

|s〉 = 1√
M

∑
x solution

|x〉 and |r〉 = 1√
N −M

∑
x no solution

|x〉
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Multiple solutions

t =

 π2 − arcsin
√

M
N

2θ


which, for N large, M � N (thus θ ≈ sin θ), yields

t ≈ π

4

√
N

M

The probability to retrieve a correct solution is

‖〈s |G t |ψ〉‖ ≥ cos2 θ = 1 − sin2 θ =
N −M

N

which, for M = N
2 yields 1

2 , but for M � N, is again close to 1.
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Multiple solutions

Computing the effect of G : 2θ

sin 2θ = 2

√
N −M

N
= 2

√
M(N −M)

N

2θ = arcsin

(
2

√
M(N −M)

N

)
M (out of 100) arcsin θ

0 0
1 0.198

20 0.8
40 0.979
50 1
60 0.979
80 0.8
99 0.198
M 0
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Multiple solutions

Surprisingly, the rotation in each iteration decreases from M = N
2 to N,

and the number of iterations consequently increases, although one would
expect to be easier to find a correct solution if their number increases!

Solution
To double the number of elements in the search space, by adding N extra
elements, none of which being a solution.
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The technique: Amplitude amplification

Grover’s algorithm made use of

H⊗n|00 · · · 0〉

to prepare a uniform superposition of potential solutions.

In general, one may resort to any module K to map the solution space to
any superposition of guesses, plus some extra qubits to be used as draft
paper:

K |00 · · · 0〉 =
∑
x

αx |x〉 |draft(x)〉



Quantum Search Grover iterator Effort Going generic Amplitude amplification

The technique: Amplitude amplification

|ψ〉 =
∑

x solution

αx |x〉 |draft(x)〉 +
∑

x no solution

αx |x〉 |draft(x)〉

yielding the following probabilities:

ps =
∑

x solution

‖αx ‖2 and pns =
∑

x no solution

‖αx ‖2 = 1 − ps

Of course, amplification has no use if ps ∈ {0, 1}.
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The technique: Amplitude amplification

Otherwise (0 < ps < 1), the amplitudes of solution inputs should be
amplified.
First, express

|ψ〉 =
√
ps |ψs〉 +

√
pns |ψns〉

for the normalised components

|ψs〉 =
∑

x solution

αx√
ps

|x〉 |draft(x)〉

|ψns〉 =
∑

x solution

αx√
pns

|x〉 |draft(x)〉

which rewrites to

|ψ〉 = sin θ|ψs〉 + cos θ|ψns〉

for θ ∈ {0, π2 } such that sin2 θ = ps .
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The technique: Amplitude amplification

A generic search iterator is built as

S = KPK−1V = WKV

where

WK |ψ〉 = |ψ〉
WK |φ〉 = −|φ〉 for all states orthogonal to |ψ〉

The sets {|ψs〉, |ψns〉} and {|ψ〉, |ψ〉} are bases for the relevant
2-dimensional subspace.
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The technique: Amplitude amplification

As expected, starting in |ψ〉, the oracle produces

− sin θ|ψs〉 + cos θ|ψns〉 = cos(2θ)|ψ〉− sin(2θ)|ψ〉

which, followed by the amplifier, yields

cos(2θ)|ψ〉+ sin(2θ)|ψ〉

i.e. the effect of iterator S is

S |ψ〉 = cos(2θ)|ψ〉+ sin(2θ)|ψ〉

which can be expressed in the basis {|ψs〉, |ψns〉} as

S |ψ〉 = sin(3θ)|ψs〉+ cos(3θ)|ψns〉
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The technique: Amplitude amplification

The repeated application of S a total of k times rotates the initial state
|ψ〉 to

Sk |ψ〉 = sin((2k + 1)θ)|ψs〉 + cos((2k + 1)θ)|ψns〉

For the correct number of iterations, this procedure reaches a state such
that a measurement will return an element of the subspace spanned by
|ψs〉 with a probability close to 1.
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The technique: Amplitude amplification

As before, to get that high probability, the smallest value for k one can
choose is such that

(2k + 1)θ ≈ π

2

For a small θ, as
sin θ =

√
ps ≈ θ

the magnitude of the right number of iterations is

O

(√
1

θ

)
because

(2k + 1)
√
ps = θ ⇔ k =

π

4
√
ps

−
1

2
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To follow

The algorithm requires that one knows in advance how many times
iterator S is to be applied:

• For K = H (uniform sampling the input) this boils down to know
the number of solutions of the search problem.

• For a generic K this amounts to know the probability with which K
guesses a solution to the problem, i.e. sin(θ).

To see ...

• blind search

• estimate the amplitude with which K maps |00 · · · 0〉 to the
subspace of solutions
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