Computação Quântica

Problems on the Quantum Fourier Transform - May 2021

This exercise aims at improving your understanding of the quantum Fourier transform, a most relevant component in several quantum algorithms.

Recall the definition of QFT on K basis states:

$$
\operatorname{QFT}_{K}(|x\rangle)=\frac{1}{\sqrt{K}} \sum_{y=0}^{K-1} e^{2 \pi i\left(\frac{x}{K}\right) y}|y\rangle
$$

- Compute $\mathrm{QFT}_{\mathrm{K}}(|00 \cdots 0\rangle)$.
- The following equality
$\operatorname{QFT}_{\mathrm{K}}\left(\left|\mathrm{x}_{1} \cdots \mathrm{x}_{\mathrm{n}}\right\rangle\right)=$

$$
\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{n}\right)}|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{n} x_{n-1}\right)}|1\rangle}{\sqrt{2}}\right) \cdots \otimes \cdots\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{1} x_{2} \cdots x_{n}\right)}|1\rangle}{\sqrt{2}}\right)
$$

was used in the lecture slides without proof. Verify it holds indeed.

- One can show, as we did in the lectures, that QFT is a unitary gate by building a unitary quantum circuit for its computation. Give an alternative, direct proof that the linear transformation defined above is unitary.
- Reproduce the circuit for QFT_{4} and QFT_{8}, and compute the corresponding matrices. Give your calculation in detail.

Notes

Question 1

Fix $K=2^{n}$,

$$
\operatorname{QFT}_{K}(|00 \cdots 0\rangle)=\frac{1}{\sqrt{K}} \sum_{y=0}^{K-1} e^{2 \pi i\left(\frac{0}{K}\right) y}|y\rangle=\frac{1}{\sqrt{K}} \sum_{y_{1}, y_{2} \cdots, y_{n}=0}^{1}\left|y_{1} y_{2} \cdots y_{n}\right\rangle
$$

Clearly,

$$
\mathrm{QFT}_{4}(|00\rangle)=\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)
$$

and $\mathrm{QFT}_{2}=\mathrm{H}$.

Question 2
Let us first consider the case of QFT_{4} applied to $|x\rangle=\left|x_{1} \mathrm{x}_{2}\right\rangle$.

$$
\begin{aligned}
\mathrm{QFT}_{4}(|x\rangle) & =\frac{1}{2} \sum_{y=0}^{3} e^{2 \pi i x y 2^{-2}}|y\rangle \\
& =\frac{1}{2} \sum_{y_{1}, y_{2}=0}^{1} e^{2 \pi i x\left(y_{1} 2^{-1}+y_{2} 2^{-2}\right)}\left|y_{1} y_{2}\right\rangle \\
& =\frac{1}{2} \sum_{y_{1}, y_{2}=0}^{1}\left(e^{2 \pi i x y_{1} 2^{-1}}\left|y_{1}\right\rangle \otimes e^{2 \pi i x y_{2} 2^{-2}}\left|y_{2}\right\rangle\right) \\
& =\frac{1}{2} \sum_{y_{1}=0}^{1}\left(e^{2 \pi i x y_{1} 2^{-1}}\left|y_{1}\right\rangle \otimes \sum_{y_{2}=0}^{1} e^{2 \pi i x y_{2} 2^{-2}}\left|y_{2}\right\rangle\right) \\
& =\frac{\left(|0\rangle+e^{2 \pi i x 2^{-1}|1\rangle}\right)}{\sqrt{2}} \otimes \frac{\left(|0\rangle+e^{2 \pi i x 2^{-2}|2\rangle}\right)}{\sqrt{2}} \\
& =\frac{\left(|0\rangle+e^{2 \pi i\left(x_{1} \cdot x_{2}\right)|1\rangle}\right)}{\sqrt{2}} \otimes \frac{\left(|0\rangle+e^{2 \pi i\left(0 . x_{1} x_{2}\right)|2\rangle}\right)}{\sqrt{2}} \\
& =\frac{\left(|0\rangle+e^{2 \pi i\left(0 . x_{2}\right)|1\rangle}\right)}{\sqrt{2}} \otimes \frac{\left(|0\rangle+e^{2 \pi i\left(0 . x_{1} x_{2}\right)|2\rangle}\right)}{\sqrt{2}}
\end{aligned}
$$

The first reduction resorts to the following fact for $|y\rangle=\left|y_{1} y_{2}\right\rangle$

$$
\frac{y}{2^{n}}=\sum_{j=1}^{n} y_{j} 2^{-j}
$$

The last one to

$$
e^{2 \pi i(a . b)}=e^{2 \pi i a} e^{2 \pi i(0 . b)}=e^{2 \pi i(0 . b)}
$$

The general case follows exactly the same argument.

$$
\begin{aligned}
\mathrm{QFT}_{\mathrm{K}}(|x\rangle) & =\frac{1}{\sqrt{2^{n}}} \sum_{y=0}^{K-1} e^{2 \pi i x y^{-n}}|y\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y_{1}, \cdots, y_{n}=0}^{1} e^{2 \pi i x\left(\sum_{p=1}^{n} y_{p} 2^{-p}\right)}\left|y_{1} \cdots y_{n}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \sum_{y_{1}, y_{2}=0}^{1} \bigotimes_{p=1}^{n} e^{2 \pi i x y_{p} 2^{-p}}\left|y_{p}\right\rangle \\
& =\frac{1}{\sqrt{2^{n}}} \bigotimes_{p=1}^{n}\left(\sum_{y_{p}=0}^{1} e^{2 \pi i x y_{p} 2^{-p}}\left|y_{p}\right\rangle\right) \\
& =\frac{1}{\sqrt{2^{n}}} \bigotimes_{p=1}^{n}\left(|0\rangle+e^{2 \pi i x 2^{-p}}|1\rangle\right) \\
& =\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{n}\right)}|1\rangle}{\sqrt{2}}\right) \otimes\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{n} x_{n-1}\right)}|1\rangle}{\sqrt{2}}\right) \cdots \otimes \cdots\left(\frac{|0\rangle+e^{2 \pi i\left(0 . x_{1} x_{2} \cdots x_{n}\right)}|1\rangle}{\sqrt{2}}\right)
\end{aligned}
$$

Question 3

A somehow indirect, but easy way to show an operator is unitary, is to recall that unitarian operators preserve internal products:

$$
\begin{equation*}
(\mathrm{u}|v\rangle, \mathrm{u}|\mathrm{u}\rangle)=\langle v| \mathrm{U}^{\dagger} \mathrm{U}|\mathrm{u}\rangle=\langle v, \mathfrak{u}\rangle \tag{1}
\end{equation*}
$$

Let

$$
\mathrm{U}=\mathrm{QFT}_{\mathrm{K}}(|\mathrm{x}\rangle)=\frac{1}{\sqrt{\mathrm{~K}}} \sum_{y=0}^{\mathrm{K}-1} e^{2 \pi \mathfrak{i}\left(\frac{x}{\mathrm{~K}}\right) \mathrm{y}}|\mathrm{y}\rangle
$$

and compute

$$
\begin{aligned}
= & \langle v| \mathrm{U}^{\dagger} \mathrm{U}|\mathrm{u}\rangle \\
= & \left.\left(\frac{1}{\sqrt{\mathrm{~K}}} \sum_{y=0}^{\mathrm{K}-1} e^{2 \pi \mathfrak{i}\left(\frac{v}{\mathrm{~K}}\right) \mathrm{y}}|\mathrm{y}\rangle\right), \frac{1}{\sqrt{\mathrm{~K}}} \sum_{y=0}^{\mathrm{K}-1} e^{2 \pi \mathfrak{i}\left(\frac{\mathrm{u}}{\mathrm{~K}}\right) \mathrm{y}}|\mathrm{y}\rangle\right) \\
= & \{(\alpha|x\rangle, \beta|y\rangle)=\bar{\alpha} \beta\langle x \mid y\rangle\} \\
& \frac{1}{\mathrm{~K}} \sum_{y=0}^{\mathrm{K}-1} e^{2 \pi \mathfrak{i}\left(\frac{(u-v)}{\mathrm{K}}\right) \mathrm{y}}
\end{aligned}
$$

Case 1: $u=v$. Then,

$$
\frac{1}{K} \sum_{y=0}^{K-1} e^{2 \pi i\left(\frac{(u-v)}{K}\right) y}=\frac{K}{K}=1
$$

Case 2: $u \neq v$. Then,

$$
\frac{1}{K} \sum_{y=0}^{K-1} e^{2 \pi i\left(\frac{(u-v)}{K}\right) y}=\frac{1}{K} \sum_{y=0}^{K-1} r^{k} \text { where } r=e^{2 \pi i\left(\frac{(u-v)}{K}\right) y}|y\rangle
$$

which boils down to ${ }^{1}$

$$
\frac{1}{\mathrm{~K}} \frac{1-\mathrm{r}^{n}}{1-\mathrm{r}}=\frac{1}{\mathrm{~K}} \frac{1-e^{2 \pi i(u-v)}}{1-r}=0 \text { because }(u-v) \text { is an integer. }
$$

Thus, equality (1) holds, recalling the both $|u\rangle$ and $|v\rangle$ are vectors in an orthonormal basis.

Question 4

The circuits are direct instances of the general case for $\mathrm{QKT}_{\mathrm{K}}$ discussed in the lectures. QKT_{4} uses the rotation gate

$$
R_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i 2^{-2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right]
$$

and QKT_{8} resorts both to R_{2} and

$$
R_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{2 \pi i 2^{-3}}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi 2^{-2}}
\end{array}\right]
$$

The corresponding matrices are computed along the circuit. For exemple, for the second case, one obtains

$$
\frac{1}{\sqrt{2^{3}}}\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \rho & \rho^{2} & \rho^{3} & \rho^{4} & \rho^{5} & \rho^{6} & \rho^{7} \\
1 & \rho^{2} & \rho^{4} & \rho^{6} & 1 & \rho^{2} & \rho^{4} & \rho^{6} \\
1 & \rho^{3} & \rho^{6} & \rho & \rho^{4} & \rho^{7} & \rho^{2} & \rho^{5} \\
1 & \rho^{4} & 1 & \rho^{4} & 1 & \rho^{4} & 1 & \rho^{4} \\
1 & \rho^{5} & \rho^{2} & \rho^{7} & \rho^{4} & \rho & \rho^{6} & \rho^{3} \\
1 & \rho^{6} & \rho^{4} & \rho^{2} & 1 & \rho^{6} & \rho^{4} & \rho^{2} \\
1 & \rho^{7} & \rho^{6} & \rho^{5} & \rho^{4} & \rho^{3} & \rho^{2} & \rho
\end{array}\right]
$$

where $\rho=\sqrt{\mathfrak{i}}=e^{\frac{2 \pi i}{8}}$.

[^0]
[^0]: ${ }^{1} \mathrm{cf}$ the sum of the first n of a geometric progression: $\sum_{i=0}^{n-1} a r^{i}=a_{0}+\frac{1-r^{n}}{1-r}$.

