
Computação Quântica
Problems on the Quantum Fourier Transform — May 2021

This exercise aims at improving your understanding of the quantum Fourier transform, a most
relevant component in several quantum algorithms.

Recall the definition of QFT on K basis states:

QFTK(|x〉) =
1√
K

K−1∑
y=0

e2πi(
x
K
)y|y〉

• Compute QFTK(|00 · · · 0〉).

• The following equality

QFTK(|x1 · · · xn〉) =(
|0〉+ e2πi(0.xn)|1〉√

2

)
⊗
(
|0〉+ e2πi(0.xnxn−1)|1〉√

2

)
· · · ⊗ · · ·

(
|0〉+ e2πi(0.x1x2···xn)|1〉√

2

)
was used in the lecture slides without proof. Verify it holds indeed.

• One can show, as we did in the lectures, that QFT is a unitary gate by building a uni-
tary quantum circuit for its computation. Give an alternative, direct proof that the linear
transformation defined above is unitary.

• Reproduce the circuit for QFT4 and QFT8, and compute the corresponding matrices. Give
your calculation in detail.
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Notes

Question 1

Fix K = 2n,

QFTK(|00 · · · 0〉) =
1√
K

K−1∑
y=0

e2πi(
0
K
)y|y〉 =

1√
K

1∑
y1,y2 ··· ,yn=0

|y1y2 · · ·yn〉

Clearly,

QFT4(|00〉) =
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

and QFT2 = H.

Question 2

Let us first consider the case of QFT4 applied to |x〉 = |x1x2〉.

QFT4(|x〉) =
1

2

3∑
y=0

e2πixy2
−2

|y〉

=
1

2

1∑
y1,y2=0

e2πix(y12
−1+y22

−2) |y1y2〉

=
1

2

1∑
y1,y2=0

(e2πixy12
−1

|y1〉 ⊗ e2πixy22
−2

|y2〉)

=
1

2

1∑
y1=0

(e2πixy12
−1

|y1〉 ⊗
1∑

y2=0

e2πixy22
−2

|y2〉)

=
(|0〉+ e2πix2−1|1〉)√

2
⊗ (|0〉+ e2πix2−2|2〉)√

2

=
(|0〉+ e2πi(x1.x2)|1〉)√

2
⊗ (|0〉+ e2πi(0.x1x2)|2〉)√

2

=
(|0〉+ e2πi(0.x2)|1〉)√

2
⊗ (|0〉+ e2πi(0.x1x2)|2〉)√

2

The first reduction resorts to the following fact for |y〉 = |y1y2〉

y

2n
=

n∑
j=1

yj2
−j

The last one to
e2πi(a.b) = e2πiae2πi(0.b) = e2πi(0.b)

The general case follows exactly the same argument.
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QFTK(|x〉) =
1√
2n

K−1∑
y=0

e2πixy2
−n

|y〉

=
1√
2n

1∑
y1,··· ,yn=0

e2πix(
∑n
p=1 yp2

−p) |y1 · · ·yn〉

=
1√
2n

1∑
y1,y2=0

n⊗
p=1

e2πixyp2
−p

|yp〉

=
1√
2n

n⊗
p=1

 1∑
yp=0

e2πixyp2
−p

|yp〉


=

1√
2n

n⊗
p=1

(
|0〉+ e2πix2

−p

|1〉
)

=

(
|0〉+ e2πi(0.xn)|1〉√

2

)
⊗
(
|0〉+ e2πi(0.xnxn−1)|1〉√

2

)
· · · ⊗ · · ·

(
|0〉+ e2πi(0.x1x2···xn)|1〉√

2

)

Question 3

A somehow indirect, but easy way to show an operator is unitary, is to recall that unitarian
operators preserve internal products:

(U|v〉, U|u〉) = 〈v|U†U|u〉 = 〈v, u〉 (1)

Let

U = QFTK(|x〉) =
1√
K

K−1∑
y=0

e2πi(
x
K
)y|y〉

and compute

〈v|U†U|u〉
= { definitions} 1√

K

K−1∑
y=0

e2πi(
v
K
)y|y〉), 1√

K

K−1∑
y=0

e2πi(
u
K
)y|y〉


= { (α|x〉, β|y〉) = αβ〈x|y〉}

1

K

K−1∑
y=0

e2πi(
(u−v)
K

)y

Case 1: u = v. Then,

1

K

K−1∑
y=0

e2πi(
(u−v)
K

)y =
K

K
= 1

Case 2: u 6= v. Then,

1

K

K−1∑
y=0

e2πi(
(u−v)
K

)y =
1

K

K−1∑
y=0

rk where r = e2πi(
(u−v)
K

)y|y〉
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which boils down to1

1

K

1− rn

1− r
=

1

K

1− e2πi(u−v)

1− r
= 0 because (u− v) is an integer.

Thus, equality (1) holds, recalling the both |u〉 and |v〉 are vectors in an orthonormal basis.

Question 4

The circuits are direct instances of the general case for QKTK discussed in the lectures. QKT4 uses
the rotation gate

R2 =

[
1 0

0 e2πi2
−2

]
=

[
1 0
0 i

]
and QKT8 resorts both to R2 and

R3 =

[
1 0

0 e2πi2
−3

]
=

[
1 0

0 eiπ2
−2

]
The corresponding matrices are computed along the circuit. For exemple, for the second case,

one obtains

1√
23



1 1 1 1 1 1 1 1

1 ρ ρ2 ρ3 ρ4 ρ5 ρ6 ρ7

1 ρ2 ρ4 ρ6 1 ρ2 ρ4 ρ6

1 ρ3 ρ6 ρ ρ4 ρ7 ρ2 ρ5

1 ρ4 1 ρ4 1 ρ4 1 ρ4

1 ρ5 ρ2 ρ7 ρ4 ρ ρ6 ρ3

1 ρ6 ρ4 ρ2 1 ρ6 ρ4 ρ2

1 ρ7 ρ6 ρ5 ρ4 ρ3 ρ2 ρ


where ρ =

√
i = e

2πi
8 .

1cf the sum of the first n of a geometric progression:
∑n−1
i=0 ar

i = a0 +
1−rn

1−r
.
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