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Motivation

Simulation of quantum systems is usefull, but is computationally hard!
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Motivation

Quantum Simulation was idealized by Feynman1 and refined by LLoyd2.

Quote of Richard Feynman:

“Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly, it’s a

wonderful problem because it doesn’t look so easy.”

1[Richard P Feynman. Simulating physics with computers. International journal of theoretical physics, 21(6-7):467–488, 1982.]
2[Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996.]
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Motivation

There are many applications for quantum Simulation1:

(...)

Quantum chemistry

Open quantum systems

Condensed Matter physics

Nuclear physics, High-energy physics (Particle physics)

Cosmology!

Multiple strategies, from ”digital” quantum simulations to quantum
analogues!

1[GEORGESCU, Iulia M.; ASHHAB, Sahel; NORI, Franco. Quantum simulation. Reviews of Modern Physics, 2014, 86.1: 153.]
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Motivation

Figure: Picture of a black hole

[Alsing, Paul M., Jonathan P. Dowling, and G. J. Milburn. ”Ion trap simulations of quantum fields in an expanding universe.”
Physical review letters 94.22 (2005): 220401.]
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The Schrödinger equation

The Schrödinger equation

i~
d

dt
Ψ = HΨ

Classical physics Quantum physics

K = 1
2mv2 K = ~2

2m
d2

dx2

In position basis:

i~
d

dt
Ψ =

(
− ~2

2m

d2

dx2
+ V (x)

)
Ψ

Solutions for a free particle with V (x) = 0, with p being the momentum
and E the energy of the system.

Ψ(x , t) = Ae−i(px−Et)/~
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The hydrogen atom

Considering an Hydrogen atom (composed by 1 proton and 1 electron):

Figure: The hydrogren atom

Solutions of the Schrödinger equation1 (3-dimensions):

ψnlm(r , ϑ, ϕ) =

√(
2

na0

)
n − l − 1!

2n(n + l)!
e−

p
2 L2l+1

n−l−1(p)Ym
l (ϑ, ϕ) (1)

To every combination of n, l ,m, denominated quantum numbers,
corresponds a different solution of the equation.
1[Ym

l are the spherical harmonics functions and the L2l+1
n−l−1

are Laguerre polynomials]
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What is quantum simulation ?

We are usually interested in calculate a properties of interest given
Hamiltonians: lowest energy level of an Hamiltonian or other properties of
the energy spectra. Many things can be derived from here!

Objective:

Mimic the Hamiltonian operator: Find an Ĥ such that
H |Ψ〉 ≈ Ĥ |Ψ〉
Mimic the evolution of the Hamiltonian operator: Find e i Ĥ such

that e i Ĥ |Ψ(0)〉 ≈ e iH |Ψ(0)〉!
Very Hard!

Need to track every evolution for each configuration: 2N . But mainly
the interactions between them.
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Approximating the evolution of an Hamiltonian: A simple
example
Evolution of a quantum operator (e iHt is a unitary operator)

|Ψ(t)〉 = e iHt |Ψ(0)〉
Another way of looking into this (application of the operator over himself
until the infinity):

e iHt = lim
n→∞

(
I +

H

n

)n

Approximation algorithm:

|Ψ̃0〉 ← |Ψ0〉
j = 0

while(ti + j ∗∆t < tf )

| ˜Ψj+1〉 = U∆t |Ψ̃j〉
|Ψ(tf )〉 = |Ψ̃j〉
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Approximating U∆t

How could be possible to approximate the following Hamiltonian:
Z
⊗

Z
⊗

Z ? Evolution is given by: e i(Z⊗Z⊗Z)t

Z
⊗

Z
⊗

Z =




1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1



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Approximating U∆t

Evolution of a quantum system:

|Ψn(t)〉 = e
iEnt
~ |Ψn(0)〉 (2)

Matricial form of e−i(Z⊗Z⊗Z)∆t :

e i(Z
⊗

Z
⊗

Z)∆t =




e
i∆t
~ 0 0 0 0 0 0 0

0 e−
i∆t
~ 0 0 0 0 0 0

0 0 e−
i∆t
~ 0 0 0 0 0

0 0 0 e
i∆t
~ 0 0 0 0

0 0 0 0 e−
i∆t
~ 0 0 0

0 0 0 0 0 e
i∆t
~ 0 0

0 0 0 0 0 0 e
i∆t
~ 0

0 0 0 0 0 0 0 e−
i∆t
~




;
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Approximating U∆t

Resultant circuit:
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Diagonal Hamiltonians

If H =
∑L

k Hk and ∀j 6=i [Hi ,Hj ] = 0 then e iHt =
∏

i e
iHi t , for all t.

What if this does not happen ? ([Hi ,Hj ] 6= 0)
A possible solution: diagonalization of the Hamiltonian

HS = T †HS−diagT (3)

The correspondent evolutions reads as follows:

e−iHS t = T †e−iHS−diag tT (4)

However T , T † may be hard to calculate
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Diagonal Hamiltonians

Considering a diagonal Hamiltonian:




e−iE1t 0 0 0
0 e−iE2t 0 0
0 0 e−iE3t 0
0 0 0 e−iE4t


 (5)

A possible circuit to this Hamiltonian reads as follows:
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Simulation of the Schrödinger’s equation

Schrödinger’s equation:

i~
d

dt
Ψ =

(
− ~2

2m

d2

dx2
+ V (x)

)
Ψ

Iterative evolution of Schrödinger’s equation:

ψ(xi , t + ∆t) = e−ik
2∆te−iV (xi )∆tψ(xi , t) (6)

The operators e−ik
2∆t and e−iV (xi ), relative to velocity and position

respectively, do not commute. However the change of basis can be
achieved through the Fourier transform.

F−1e−ik
2∆tFe−iV (xi )∆t (7)
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Simulation of the Schrödinger’s equation

1[Benenti, Giuliano, and Giuliano Strini. ”Quantum simulation of the single-particle Schrödinger equation.” American Journal of
Physics 76.7 (2008): 657-662.]
2[Afonso Rodrigues, Master thesis]
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The Trotter formula

Trotter Formula:

lim
x→∞

(e iAt/ne iBt/n)n = e i(A+B)t (8)

(e iAt/ne iBt/n)n+ε = e i(A+B)t , where ε = O(∆t2/N) and n sufficiently large
(9)

Baker-Campbell-Hausdorff Formula:

e i(A+B)∆t = e iA∆te iB∆te−
1
2

[A,B]∆t2
+ O(∆t3) (10)
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A case study: Photosynthesis
Photosynthesis: mechanism of collecting and transform the sunlight

Two main phases: energy transport, chemical transformations
(reaction centre)

The energy transport may occur through different mechanics: direct
eletrical interaction or photon transport (Förster theory), or even by
coherent effects and the environment can be relevant (Redfield).

1[José Diogo Guimarães, Master thesis]
2[José Diogo Guimarães, Carlos Tavares, Mikhail I. Vasilievsky, ”Quantum simulation of photosynthesis”, to be published]
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A case study: Photosynthesis

Modeling the molecule chain:

Site basis:
∑

k=0 |k〉
Each k corresponds to the excitation of the kth site. Transport:
Excitation moves from k to k + 1.

Without environment action:

HS =
∑

m

εm |m〉 〈m|+
∑

m 6=n

Jmn |m〉 〈n| (11)

where εm is the site energy of the molecule m and Jnm is the coupling
strength between the molecules n and m.
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A case study: Photosynthesis
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What can be calculated with the evolution ?

The evolution itself: measurement in the appropriate basis

Calculation of ground states: e.g. Adiabatic computing + Phase
estimation

H = (1− t/T )Hi + (t/T )Hp (12)
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Calculation of the ground state with the Variational
quantum eigensolver

This variational quantum eigensolver allows the calculation of the ground
state of a system
Given a state of the shape:

|Ψ〉 = λ1 |Ψ1〉+ λ2 |Ψ2〉+ . . .+ λn |Ψn〉 (13)

The objective is to find:

min (H |Psi〉) (14)
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Hamiltonian Formalism

The hamiltonians describe the total energy of systems, which contains the
operations associated with the kinetic and potential energies.

Generic formula:

H = K + V = − ~
2m
∇2 + V

For the majority of chemistry systems a Fermionic1 Hamiltonian is enough.
Total Fermionic Hamiltonian considering all interactions:

H = −
N∑

i=1

1

2
∇2

i −
M∑

A=1

1

2MA
∇A2−

N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij
+

M∑

A=1

M∑

B>A

ZAZB

rBA

1Fermions are subatomic particles, such as an electron/proton, which has half-integral spin and follows the Fermi-Dirac statistics.

2 Components (left to right) - kinectic energy electrons; kinectic energy of nuclei; electric attraction nuclei - electrons; electric
repulsion electrons; electric repulsion nuclei

[Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier
Corporation, 2012.]
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Hamiltonian Formalism

The hamiltonians describe the total energy of systems, which contains the
operations associated with the kinetic and potential energies.

Generic formula:

H = K + V = − ~
2m
∇2 + V

For the majority of chemistry systems a Fermionic1 Hamiltonian is enough.
Electronic hamiltonian after applying Born-Oppenheimer approximation:

Helec = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑

A=1

ZA

riA
+

N∑

i=1

N∑

j>i

1

rij

1Fermions are subatomic particles, such as an electron/proton, which has half-integral spin and follows the Fermi-Dirac statistics.

2 Components (left to right) - kinectic energy electrons; kinectic energy of nuclei; electric attraction nuclei - electrons; electric
repulsion electrons; electric repulsion nuclei

[Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced electronic structure theory. Courier
Corporation, 2012.]
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Orbitals
When dealing with Fermionic systems, spin plays an important role (Pauli
exclusion principle) (χ - Orbital, solution for the wave equation + spin)

Ψ(χ1, χ2) = −Ψ(χ2, χ1) (15)

The Hamiltonians have to act over the orbitals? Which orbitals?

H |Ψ〉 = E |Ψ〉

Solution: Use wave function approximations (here STO3G functions are
used).

φSTO−3G
1s (ζ, r) = c1

(
2α1

π

)3
4

e−α1r2

+ c2

(
2α2

π

)3
4

e−α2r2
+ c3

(
2α3

π

)3
4

e−α3r2
. (16)
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Second Quantization

The Second Quantization is an alternative formalism for specifying
Hamiltonians.

Creation and annihilation operators (allows systems with variable
dimension)

a†i |χ1χ2 . . . χn〉 = |χiχ1χ2 . . . χn〉 ; ai |χiχ1χ2 . . . χn〉 = |χ1χ2 . . . χn〉
(17)

The creation an annihilation operators already encompass the
necessary symmetry of the wave equations

aα a
†
β + a†α aβ = δαβ . (18)

[Dirac, Paul Adrien Maurice. The principles of quantum mechanics. No. 27. Oxford university press, 1981]
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Second Quantization

Hamiltonian:

H = H1 + H2 =
M−1∑

α,β=0

ταβa
†
αaβ +

1

2

M−1∑

α,β,γ,δ=0

µαβγδa
†
αa
†
γaδaβ

where

ταβ =

∫
dx1ψ

∗
α(x1)

(
−∇2

2
+
∑

i

Zi

|ri1|

)
ψβ(x1)

and

µαβγδ =

∫
dx1dx2ψ

∗
α(x1)ψβ(x1)

(
1

|r12|

)
ψ∗γ(x2)ψδ(x2)

where ταβ and µαβγδ are matrix/operator coefficients.
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Integeral calculation
As it seems obvious we are not able to calculate the whole set of integrals,
we have to choose a subset of the basis set, i.e. one that contains the
ground state. There are several methods to the approximation of these
integrals: MO-LCAO. It is possible to refine the first approximation with
the Hartreee-Fock method.

Figure:
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Jordan-Wigner Transformation

Has the purpose to map fermions into qubits.
σ− represents the spin-lowering operator and σ+ the spin-raising operator,
which can be written in terms of Pauli operator:

σ− =
1

2
(σx + iσy ) =

[
0 0
1 0

]

σ+ =
1

2
(σx–iσy ) =

[
0 1
0 0

]

Lowering and raising operators over sets of qubits:

a†j = 1⊗j−1
⊗

σ−
⊗

σZ⊗N−j−1

aj = 1⊗j−1
⊗

σ+
⊗

σZ⊗N−j−1

[James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum
computers. Molecular Physics, 109(5):735–750, 2011.]
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Quantum Circuit

Figure: Summary of operators representation

In fact there are more efficient quantum circuit encodings:parity encoding.

[James D Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. Simulation of electronic structure hamiltonians using quantum
computers. Molecular Physics, 109(5):735–750, 2011.]
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Quantum Circuit

General shape of the Hamiltonian’s circuit after the application of the
Jordan-Wigner transform (or similar);

H =
∑

i ; q

hiqσ
(q)
i +

∑

i1,i2; q1,q2

hi1,i2q1,q2
σ

(q1)
i1
⊗ σ(q2)

i2
+ · · · (19)

h - coefficients q - qubit index i - type of pauli gate (x, y, z)
There are tools to do these transformations available in IBM Q, or quipper
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Variational Quantum Eigensolver

Fermionic problem

Classical cost function

qubit Hamiltonian

Hq =
∑

α

hαPα =
∑

α

hα

N⊗

J=1

σ
αj

j

✲

✲

classical

calculate energy

E =
∑

α

hα〈Ψ(θ)|Pα|Ψ(θ)〉 ≥ Eexact

adjust parameters θ

❄
quantum

prepare trial state |Ψ(θ)〉

measure expectation value

〈Ψ(θ)|
N⊗

j=1

σ
αj

j |Ψ(θ)〉

❄
opti-
miza-
tion

✲

✛

❄
solution θ∗

Figure:

[Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger, Stefan Filipp, Andreas
Fuhrer, Jay M Gambetta, Marc Ganzhorn, et al. Quantum optimization using variational algorithms on near-term quantum
devices. arXiv preprint arXiv:1710.01022, 2017.]
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Quantum Expected value Estimation (QEE)

Calculation of the expected value of the Hamiltonian

〈H〉 = 〈Ψ|H|Ψ〉
=

∑

i ; q

hiq 〈σ(q)
i 〉+

∑

i1,i2;
q1,q2

hi1,i2q1,q2
〈σ(q1)

i1
⊗ σ(q2)

i2
〉+ · · · (20)

Table: Comparison of resources needed for two methods, Quantum phase
estimation and QEE. M: the number of independent terms of the Hamiltonian
approximation, p: the precision chosen, O(...): assymptotic lower bound of the
associated resource function.

Method
Number of
state preparations

Coherence
time

Number
of steps

QEE O(M) O(1) O(|hmax |2Mp−2)
QPE O(1) O(p−1) O(p−1)
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Preparation of trial states

It is necessary a vaccum state. Obtainable for instance by the Hartree-Fock
method. However, it is just an approximation to the ground state.

|Ψ0〉 =
N∏

α

a†α|vac〉 ,

The trial states can be obtained by the application of a parameterizable

operator Û(
−→
θ ), where

−→
θ , is a vector of real numbers.

|Ψ(
−→
θ )〉 = Û(

−→
θ )|Ψ0〉 , (21)

Example of an ansatz: the UCC

|Ψ(
−→
θ )〉 = eT̂ (

−→
θ )−T̂ †(

−→
θ ) |Ψ0〉 . (22)
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Preparation of trial states

Here T̂ is an operator representing excitations from occupied to
unoccupied states (labeled below by Greek and Latin indices, respectively),
composed of hierarchical terms,

T̂ = T̂1 + T̂2 + . . . ,

corresponding to n-particle excitations, namely,

T̂1(
−→
θ ) =

∑

α,a

θaαa
†
a aα , (23)

T̂2(
−→
θ ) =

1

2

∑

α,β; a,b

θa bαβa
†
a a
†
b aα aβ , (24)

· · ·
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The optimization method

Generally an optimization method is constituted by two steps: evaluation
of a solution and the search for other solutios:
Evaluation of the function in the VQE method:

E [Ψ(
−→
θ )] =

〈Ψ(
−→
θ )|H|Ψ(

−→
θ )〉

〈Ψ(
−→
θ )|Ψ(

−→
θ )〉

. (25)

The search for new solutions will made by a classical method for the real

parameters
−→
θ , example: Cobyla method, Gradient descent.
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IBM

Table: The set of technical parameters used for
quantum calculations.

parameter value

shotsa 4096
Max. number of itera-
tions of Cobyla

15000

Max. number of itera-
tions of PySCF

5000

optimization level 3
mapping method Jordan-

Wigner
QISkit version 0.13.0

anumber of times the execution of circuits is
to be performed due to the stochastic nature

of quantum computers
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Results - H2 molecule

Figure: Dissociation curve of H2 molecule, as calculated with a classical solver
(full lines) and with the VQE (symbols connected by lines), for several values of
the external electric field E marked by color. The Stark effect (i.e. the shift of the
minimum energy with electric field) is shown in the inset.
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Results - LiH molecule

[Carlos Tavares, Sofia Oliveira, Vitor Fernandes, Andrei Postnikov, Mikhail I. Vasilevskiy. Quantum simulation of the
ground–state Stark effect in small molecules: A case study using IBM Q. to be published, 2020 (?).]
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Expectations for the Future

So where do Quantum computation stands now?

Figure: Number of Qubits per molecule - IBM Research

[IBM-Quantalab School on Quantum Computing on October 23 rd and 24 th , 2018, INL]
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Expectations for the Future

So where do we stand now?

Chemistry constitutes a natural field of application for quantum
mechanics. We are interested in applying this methodology to study
physical phenomena on the effects of physical fields over molecules.

It also seems feasisble to study simplified models of biology. Quantum
physics is quite relevant in many biological phenomena:

photosynthesis, vision, smell...

Origins of life? Conscioussness?1

1[Schrödinger, E. (1992). What is life?: With mind and matter and autobiographical sketches. Cambridge University Press.]

C. Tavares Quantum simulation May 28, 2020 40 / 45



Quantum computational complexity
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Quantum computational complexity

P ⊆ BQP ⊆ NP ⊆ QMA ⊆ PSPACE ≡ QIP ⊆ EXP

BQP class - All computational problems efficiently solvable by quantum
computers: Shor algorithm
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Quantum computational complexity

QMA class - is the quantum analogous of the NP class. The complexity
of these problems are studied in the field of Hamiltonian complexity

Problems: QC-SAT, QC-Circuit, k-Local Hamiltonian, Density matrix
consistency

Finding the Ground State is hard even for a quantum computer, and
in fact many classical optimization problems (NP-HARD) can be
reduced to a ground state problem

QIP class - A generalization of the QMA class, where an unbounded of
number of interactions between the prover and verifier are allowed
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Quantum computational complexity: exotic physics

Post BQP ≡ PP - Very powerful computational class, possible if physics
had post-selection: if one can restrict the probabilities in the result state.

Quantum computation with CTC’s ≡ PSPACE - Computations
possible in a quantum physics with closed timelike curves: all computable
functions with Polynomial resources are efficient.
Both are types of quantum physics with non-linearities.
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Questions?
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