Introduction to measurement-based quantum computation

Ernesto F. Galvão (INL)

Aula convidada, Mestrado em Eng. Física, UMinho. 7/5/2020

Quantum and Linear-Optical Computation group - INL

Group leader: Ernesto Galvão
(started in July 2019)
Previously:
Universidade Federal Fluminense (Brazil) (on leave)

Staff Researcher: Rui Soares Barbosa (Staff Researcher from February 2020)

Staff Researcher (on-going selection process)

Quantum and Linear-Optical Computation group - INL

Research:

- Foundations of quantum computation
- Contextuality as a resource
- Measurement-based and topological quantum computation
- Photonic quantum computation
- Characterization of bosonic indistinguishability
- Implementation of complex multimode linear optical interferometers for computation

Boson sampling devices use quantum interference for quantum computational advantage

Publication highlights

Photonic implementation of boson sampling: a review. Advanced Photonics 1 (3), 034001 (2019).
Witnessing genuine multiphoton indistinguishability. Phys. Rev. Lett. 122, 063602 (2019).
Contextual Fraction as a Measure of Contextuality. Phys. Rev. Lett. 119, 050504 (2017).
Experimental scattershot boson sampling. Science Advances 1 (3), e1400255 (2015).
Experimental validation of photonic boson sampling. Nature Photonics 8, 615 (2014).
General rules for bosonic bunching in multimode interferometers. Phys. Rev. Lett. 111, 130503 (2013).
Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nature Photonics 7, 545549 (2013).

Introduction to measurement-based quantum computation

Outline:

- Clifford circuits
- Pauli and Clifford groups
- Simulability of Clifford circuits
- Upgrading Clifford circuits to universal QC
- How MBQC works
- One-bit teleportation circuit
- Gate teleportation
- Concatenating MBQC gates
- Resources for MBQC: graph and cluster states
- Experimental implementations
- Resources for MBQC: contextuality and non-locality

Clifford circuits

$$
\left.|A\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i / 4}|1\rangle\right)-\infty\right\rangle
$$

Basics of the circuit model

- The most well-known model for quantum computation is the circuit model, obtained in analogy with classical circuits

- \quad wires $=$ qubits (i.e. 2 -level systems)
- little boxes = single-qubit gates

$$
\rangle=\cos (/ 2)| 0\rangle+e^{i} \sin (/ 2)|1\rangle
$$

1-bit Z teleportation

Clifford circuits

- Pauli group: tensor products of $\pm I, \pm i I, X, Z$
- example: $i Z_{1} \quad X_{2} \quad I_{3}$

Clifford circuits

- Pauli group: tensor products of $\pm I, \pm i I, X, Z$
- example: $i Z_{1} \quad X_{2} \quad I_{3}$
- Clifford group: unitaries C that map Paulis into Paulis:

$$
C P_{i} C^{+}=P_{j} \Leftrightarrow C P_{i}=P_{j} C
$$

- Clifford group is generated by $\{H, P, C N O T\}$

- Clifford circuits create large amounts of entanglement, are useful for teleportation, error correction...
...but are efficiently simulable.

Clifford circuits

- Pauli group: tensor products of $\pm I, \pm i I, X, Z$
- Clifford group: unitaries C that map Paulis into Paulis:

R

P

$$
C P_{i} C^{+}=P_{j} \Leftrightarrow C P_{i}=P_{j} C
$$

CNOT

$$
\begin{aligned}
& X \rightarrow Z \\
& Z \rightarrow X \\
& X \rightarrow Y
\end{aligned}
$$

$$
-\sqrt{R}
$$

$$
\sqrt{\mathrm{P}}
$$

$$
\begin{gathered}
X \otimes I \rightarrow X \otimes X \\
I \otimes X \rightarrow I \otimes X \\
Z \otimes I \rightarrow Z \otimes I \\
I \otimes Z \rightarrow Z \otimes Z
\end{gathered}
$$

- The key simulation idea is to use Heisenberg picture:
- initial state is eigenstate of Pauli operator
- each Clifford gate maps it into a new Pauli (efficient computation)
- keep track of the Pauli transformation until end, when measurement outcomes can be efficiently computed.
- Clifford circuits are not believed even to be able to do universal classical computation...

Example: Heisenberg simulation of Clifford circuit

R	$X \rightarrow Z$	- 2		A: $\operatorname{CNOT}(1 \rightarrow 2)$	\bar{X}_{1}	$X \otimes X$
	$Z \rightarrow X$				\bar{X}_{2}	$I \otimes X$
			$\|\alpha\rangle$		\bar{Z}_{1}	$Z \otimes I$
P	$\begin{aligned} & X \rightarrow Y \\ & Z \rightarrow Z \end{aligned}$	-	$\|\beta\rangle$		\bar{Z}_{2}	$Z \otimes Z$
CNOT	$\begin{gathered} X \otimes I \rightarrow X \otimes X \\ I \otimes X \rightarrow I \otimes X \\ Z \otimes I \rightarrow Z \otimes I \\ I \otimes Z \rightarrow Z \otimes Z \end{gathered}$			B: $\mathrm{CNOT}(2 \rightarrow 1)$	\bar{X}_{1}	$I \otimes X$
					\bar{X}_{2}	$X \otimes X$
					\bar{Z}_{1}	$Z \otimes Z$
					\bar{Z}_{2}	$Z \otimes I$
				C: $\mathrm{CNOT}(1 \rightarrow 2)$	\bar{X}_{1}	$I \otimes X$
					\bar{X}_{2}	$X \otimes I$
					\bar{Z}_{1}	$I \otimes Z$
					\bar{Z}_{2}	$Z \otimes I$

- The key simulation idea is to use Heisenberg picture:
- initial state is eigenstate of Pauli operator
- each Clifford gate maps it into a new Pauli (efficient computation)
- keep track of the Pauli transformation until end, when measurement outcomes can be efficiently computed.

"Upgrading" a Clifford computer

- Clifford: $\{H, P, Z, C N O T\}$, all that's missing is T gate

"Upgrading" a Clifford computer

- Clifford: $\{H, P, Z, C N O T\}$, all that's missing is T gate
- There's a work-around using:
- magic input states and
- adaptativity
[Bravyi, Kitaev PRA 71, 022136
 (2005)]

$$
|A\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i / 4}|1\rangle\right) \rightarrow \overbrace{-\infty}^{\mathrm{sx}}-T| \rangle
$$

"Upgrading" a Clifford computer

- Clifford: $\{H, P, Z, C N O T\}$, all that's missing is T gate
- There's a work-around using:
- magic input states and
- adaptativity
[Bravyi, Kitaev PRA 71, 022136
 (2005)]

$$
|A\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i / 4}|1\rangle\right) \rightarrow \underbrace{s .}_{-\infty}
$$

"Upgrading" a Clifford computer

- Clifford: $\{H, P, Z, C N O T\}$, all that's missing is T gate
- There's a work-around using:
- magic input states and
- adaptativity
[Bravyi, Kitaev PRA 71, 022136
 (2005)]

$$
|A\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i / 4}|1\rangle\right) \rightarrow \underbrace{s x}_{-\infty}-T| \rangle
$$

is universal for QC

- Relevant for topological quantum computation with anyons, as for example Ising model implements Clifford operations in a topologically protected way

Measurement-based quantum computation (MBQC)

MBQC: basic ingredients

- Class of QC models where the computation is driven by measurements on previously entangled states

1- Initialization by $C Z$ gates on $\left.\right|^{+\rangle}$states;
2- Sequence of single-qubit, adaptive measurements.

- Origin: gate teleportation idea [Gottesman, Chuang, Nature 402, 390 (1999)]
- Most well-know variant is the one-way model (1WQC)[Raussendorf, Briegel PRL 86, 5188 (2001)]
- Brief introduction to MBQC based on McKague's paper "Interactive proofs for BQP via self-tested graph states" arxiv:1309.5675 (2013)

MBQC: step-by-step

3 versions of the " 1 -bit Z teleportation" circuit:

- X measurement result controls Z gate
- Direct calculation shows this works

MBQC: step-by-step

3 versions of the "1-bit Z teleportation" circuit:

- X measurement result controls Z gate
- Direct calculation shows this works

- Identity transforms CNOT into CZ

MBQC: step-by-step

3 versions of the " 1 -bit Z teleportation" circuit:

- X measurement result controls Z gate
- Direct calculation shows this works

- Identity transforms CNOT into CZ
- Left H incorporated in input $|+\rangle$
- $\mathrm{HZ}=\mathrm{XH}$ identity

MBQC: step-by-step

3 versions of the " 1 -bit Z teleportation" circuit:

- X measurement result controls Z gate
- Direct calculation shows this works

- Identity transforms CNOT into CZ

- Left H incorporated in input $|+\rangle$
- $\mathrm{HZ}=\mathrm{XH}$ identity

So far: no computation, but: ancilla initialized in $|+\rangle$ state; CZ gate creates entanglement

MBQC: step-by-step
Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i Z / 2)$

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

- U followed by X -measurement = measurement in $x-y$ plane of Bloch sphere:
$U^{+} X U=R(\quad)=\cos (\quad) X+\sin () Y$

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

- U followed by X -measurement = measurement in $x-y$ plane of Bloch sphere:
$U^{+} X U=R(\quad)=\cos () X+\sin () Y$

MBQC: step-by-step

Now let's teleport the unitary $U()=\exp (i \quad Z / 2)$:

- U followed by X -measurement = measurement in $x-y$ plane of Bloch sphere:
$U^{+} X U=R(\quad)=\cos () X+\sin () Y$

Evolved state $U()\rangle$ is teleported, via entanglement and right choice of measurement basis of top qubit
(gate teleportation idea of Gottesman and Chuang)

MBQC: step-by-step

Now two different unitaries in sequence:

- Two gate teleportations, without final H gates, result in final state

$$
H U\left({ }_{2}\right) H U\left({ }_{1}\right)\rangle
$$

MBQC: step-by-step

Now two different unitaries in sequence:

- Two gate teleportations, without final H gates, result in final state

$$
H U\left({ }_{2}\right) H U\left(\left(_{1}\right)\rangle\right.
$$

- Now commute X and CZ, which requires adding Z gate controlled by measurement 1

MBQC: step-by-step

Now two different unitaries in sequence:

- Two gate teleportations, without final H gates, result in final state

$$
H U\left({ }_{2}\right) H U\left(\left(_{1}\right)\rangle\right.
$$

- Now commute X and CZ, which requires adding Z gate controlled by measurement 1
- Incorporate X correction into measurement angle of 2 . When X is applied because:

$$
{ }_{2} \quad X R(\quad) X=R(\quad)
$$

MBQC: step-by-step

Now two different unitaries in sequence:

- Two gate teleportations, without final H gates, result in final state

$$
H U\left({ }_{2}\right) H U\left(\left(_{1}\right)\rangle\right.
$$

- Now commute X and CZ, which requires adding Z gate controlled by measurement 1
- Incorporate X correction into measurement angle of 2 . When X is applied because:

$$
{ }_{2} \rightarrow \quad X R() X=R(\quad)
$$

- By adapting measurement 2 according to outcome of 1, we can apply

$$
H U\left({ }_{2}\right) H U\left({ }_{1}\right)\rangle
$$

- Easy to extend to multiple single-qubit unitaries, and $\{H U()\}$ is universal set for 1 qubit
Adaptativity allows for any single-qubit unitary to be implemented in the one-way model CZ gates can be implemented similarly, propagation to beginning induces extra corrections
- How do corrections affect future measurements? We can have both X and Z corrections:
Outcomes of previous measurements:

$$
z, x \quad\{\quad 1,1\}
$$

- As $X R() X=R(\quad), \mathrm{X}$ corrections turn \rightarrow
- As $Z R() Z=R()$
, Z corrections invert the output

- How do corrections affect future measurements? We can have both X and Z corrections:
Outcomes of previous measurements:

$$
z, x \quad\{\quad 1,1\}
$$

- As $X R() X=R(\quad), \mathrm{X}$ corrections turn \rightarrow
- As $Z R() Z=R()$
, Z corrections invert the output

MBQC: step-by-step

- How do corrections affect future measurements? We can have both X and Z corrections:
Outcomes of previous measurements:

$$
z, x \quad\{1,1\}
$$

- As $X R() X=R(\quad), \mathrm{X}$ corrections turn \rightarrow
- As $Z R() Z=R()$
, Z corrections invert the output

MBQC: step-by-step

- How do corrections affect future measurements? We can have both X and Z corrections:
Outcomes of previous measurements:

$$
z, x \quad\{\quad 1,1\}
$$

- As $X R() X=R(\quad), \mathrm{X}$ corrections turn \rightarrow
- As $Z R($) $Z=R(\quad) \quad, Z$ corrections invert the output

X correction
Z correction

Classical control computer needs only store\&update sum modulo 2 of X and Z corrections of each qubit

This parity computer is quite simple, but together with the quantum resource yields universal QC

Entanglement resources for MBQC

- Graph states: class of states obtainable by

1. Initialization of a set of qubits $|\nmid \psi\rangle$ states
2. CZ gates between neighboring vertices

- Examples: ${ }^{\text {in agraph }}$
- No. 7 (5 qubits): sufficient for any single qubit
 unitary
- No. 3 (4 qubits): sufficient for CNOT

Entanglement resources for MBQC

- Graph states: class of states obtainable by

1. Initialization of a set of qubits $|\nmid+\rangle$ states
2. CZ gates between neighboring vertices

- Examples: ${ }^{\text {in agraph }}$
- No. 7 (5 qubits): sufficient for any single qubit unitary
- No. 3 (4 qubits): sufficient for CNOT
- Alternative characterization of graph states:
- Unique state which is simultaneous eigenstate (with eigenvalue 1) of set of operators
 (with eigenvalue 1) of set of operators

(c)

$$
K_{i}=X_{i}{ }_{j \text { neighbor of }}{ }^{Z_{j}}
$$

- Are there families of graph states which are universal for QC?

Entanglement resources for MBQC

M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest and H.-J. Briegel


```
                                    | Input (measured in x)
- Output
(- \(\mathbf{z}\)-Measurements
- y-Measurements
- x -Measurements
- non-Pauli-Measurements
```

from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers, Algorithms and Chaos", Varenna, Italy (2005)

- Example of universal graph: 2D square lattice (called cluster state)
- Above: MBQC implementation of 3-qubit discrete Fourier Transform
- "Unwanted" vertices deleted by Z-measurements; resulting corrections must be taken into account

Entanglement resources for MBQC

- Some known universal resources for MBQC: 2D triangular, hexagonal, Kagome lattices

- These resources are "universal state preparators" = strong notion of universality
- Other resource states enable simulation of classical measurement statistics of any universal quantum computer = weaker notion of universality
- Some of these require a universal classical computer (instead of a parity computer)
[Gross et al., PRA 76, 052315 (2007)]
- Universality also for ground state of 2D Affleck-Kennedy-Lieb-Tasaki (AKLT) model
[Wei, Affleck, Raussendorf PRL 106, 070501 (2011)]
- MBQC on some resource states is known to be simulable, e.g. on 1D chain
[Markov, Shi, SIAM J. Comput. 38, 963 (2008)]

MBQC - implementations

- Optical lattices - counter-propagating laser beams trap cold neutral atoms
- Challenge: single-site addressing

from: Weintenberg et al., Nature 471, 319
 (2011)
- Proof-of-principle implementations using photons
- Topological error-correction using eight-photon cluster states
from: Yao et al., Nature 482, 489 (2012)

MBQC - implementations

- Using one-way model to advantage: building large resource states from probabilistic operations; at once or on the go

from: Briegel et al., Nat. Phys. 5 (1), 19 (2009)

from: O'Brien, Science 318, 1467 (2007)
- Schemes for adapting imperfect clusters for MBQC

(a) initial faulty square lattice

(f) deletion and contraction ($\mathrm{Q} 1 \& \mathrm{Q} 2)$
from: Browne et al., New J. Phys. 10, 023010 (2008)

Application: blind quantum computation

- Classical/quantum separation in MBQC allow for implementation of novel protocols such as blind quantum computation
- Here, client has limited quantum capabilities, and uses a server to do computation for her.
- Blind = server doesn't know what's being computed.

Broadbent, Fitzsimons, Kashefi, axiv:0807.4154 [quant-ph]

- Clearly, the correlations in the resource state.

- Analysis of MBQC protocols in terms of Bell inequalities:
- Anders/Browne PRL 102, 050502 (2009)
- Hoban et al., New J. Phys. 13, 023014 (2011)
- ...but measurements are usually not space-like separated:
\square quantum contextuality
- Raussendorf, PRA 88, 022322 (2013)

Quantum contextuality

- Context of an observable $A=$ set of commuting observables measured together with A
- Non-contextuality hypothesis: outcomes of observables are context-independent
- Violated by quantum mechanics!
- Famously proved by Kochen and Specker (1967). Let's see a proof by Mermin (1990).

$\mathbb{1} \otimes \sigma_{z}$	$\sigma_{z} \otimes \mathbb{1}$	$\sigma_{z} \otimes \sigma_{z}$
$\sigma_{x} \otimes \mathbb{1}$	$\mathbb{1} \otimes \sigma_{x}$	$\sigma_{x} \otimes \sigma_{x}$
$\sigma_{x} \otimes \sigma_{z}$	$\sigma_{z} \otimes \sigma_{x}$	$\sigma_{y} \otimes \sigma_{y}$

- Operators in each row and column commute;

Moreover, they are the product of the other two in same row/column

- EXCEPTION: third column:

$$
y \quad y=z_{z} \times_{x}{ }_{x}
$$

- So it's impossible to assign +1 or -1 values to each observable in a context-independent way. \longrightarrow QM is contextual.

flavour

- Consider 57 states in 3-dimensional Hilbert space, real amplitudes.
- Orthogonal triads must be colored black, white, white.
- Some of the triads above have vectors in common.
- One can show that there's no possible coloring satisfying the orthogonality relations.

Contextuality is necessary for magic state distillation

- The Mermin square proof of quantum contextuality is state-independent - any state violates the non-contextuality hypothesis.
- For Hilbert space dimension $\mathrm{d}>2$, all contextuality proofs are state-dependent.
- So what's special about states revealing contextuality?

Contextuality is necessary for magic state distillation

- The Mermin square proof of quantum contextuality is state-independent - any state violates the non-contextuality hypothesis.
- For Hilbert space dimension $\mathrm{d}>2$, all contextuality proofs are state-dependent.
- So what's special about states revealing contextuality?
- Howard et al. (2014) looked at that problem in the QC model of Clifford computer + magic states:

from Howard et al., Nature 310, 351 (2014)
PSIM = simulable under
stabilizer measurements
PSTAB = stabilizer states
$Q=$ general quantum states

Contextuality is necessary for magic state distillation

- The Mermin square proof of quantum contextuality is state-independent - any state violates the non-contextuality hypothesis.
- For Hilbert space dimension $\mathrm{d}>2$, all contextuality proofs are state-dependent.
- So what's special about states revealing contextuality?
- Howard et al. (2014) looked at that problem in the QC model of Clifford computer + magic states:

- Result: any state out of PSIM violates a statedependent non-contextuality inequality, using stabilizer measurements. States in PSIM are non-contextual.
contextuality is necessary
for magic-state computation

from Howard et al., Nature 310, 351 (2014)
PSIM = simulable under
stabilizer measurements
PSTAB = stabilizer states
$Q=$ general quantum states

Application: model for quantum spacetime

- MBQC can serve as a discrete toy model for quantum spacetime:

quantum space-time	MBQC
quantum substrate	graph states
events	measurements
principle establishing global space-time structure	determinism requirement for computations
	[Raussendorf et arxiv:1108.5774]

- Even closed timelike curves (= time travel) have analogues in MBQC!
[Dias da Silva, Kashefi, Galvão PRA 83, 012316 (2011)]

Bellnon-locality

- Bell inequalities (Bell 1964) are limits on the correlation of distant systems
- Example: Clauser-Horn-Shimony-Holt (CHSH) inequality (1969):
- Alice e Bob measure dychotomic properties (results +1 or -1)
- Each chooses randomly which property to measure:
- Alice measures A_{1} or A_{2}; result a_{1} or a_{2}
- Bob measures B_{1} or B_{2}; result b_{1} or b_{2}.

Bob

CHSH inequality

- Hypotheses:
- Pre-determined value for experimental outcomes (realism)
- Result of A doesn't depend on what B does (and vice-versa) (loc
- CHSH inequality:

$$
\left|\left\langle a_{1} b_{1}\right\rangle+\left\langle a_{2} b_{1}\right\rangle+\left\langle a_{2} b_{2}\right\rangle \quad\left\langle a_{1} b_{2}\right\rangle\right| \quad 2
$$

CHSH inequality

- Alice and Bob compare notes and jointly prepare spreadsheet:

a_{1}	a_{2}	b_{1}	\mathbf{b}_{2}	$\mathbf{a}_{1} \mathbf{b}_{1}$	$\mathbf{a}_{1} \mathbf{b}_{2}$	$a_{2} \mathbf{b}_{1}$	$\mathbf{a}_{2} \mathbf{b}_{2}$
+1	-1	-1		-1			
	+1	+1	+1			-1	
-1			+1		-1		
				$\left\langle a_{1} b_{1}\right\rangle$	$\left\langle a_{1} b_{2}\right\rangle$	$\left\langle a_{2} b_{1}\right\rangle$	$\left\langle a_{2} b_{2}\right\rangle$

- If local realism holds, then:
$\left|\left\langle a_{1} b_{1}\right\rangle+\left\langle a_{2} b_{1}\right\rangle+\left\langle a_{2} b_{2}\right\rangle \quad\left\langle a_{1} b_{2}\right\rangle\right| \quad 2$

CHSH inequality

- Alice and Bob compare notes and jointly prepare spreadsheet:

\mathbf{a}_{1}	\mathbf{a}_{2}	\mathbf{b}_{1}	\mathbf{b}_{2}	$\mathbf{a}_{1} \mathbf{b}_{1}$	$\mathbf{a}_{1} \mathbf{b}_{2}$	$\mathbf{a}_{2} \mathbf{b}_{1}$	$\mathbf{a}_{2} \mathbf{b}_{2}$
+1	-1	-1	-1				
	+1	+1	+1				-1
-1			+1		-1		
				$\left\langle a_{1} b_{1}\right\rangle$	$\left\langle a_{1} b_{2}\right\rangle$	$\left\langle a_{2} b_{1}\right\rangle$	$\left\langle a_{2} b_{2}\right\rangle$

- If local realism holds, then:
$\left|\left\langle a_{1} b_{1}\right\rangle+\left\langle a_{2} b_{1}\right\rangle+\left\langle a_{2} b_{2}\right\rangle \quad\left\langle a_{1} b_{2}\right\rangle\right| \quad 2$
- But local measurements on particlesinentangled state $\underbrace{}_{A B}=\frac{1}{\sqrt{2}}\left(\left.| \rangle_{A}| \rangle_{B}\right|_{A}| \rangle_{B}\right\rangle_{-}$ give $\left|\left\langle a_{1} b_{1}\right\rangle+\left\langle a_{2} b_{1}\right\rangle+\left\langle a_{2} b_{2}\right\rangle\left\langle a_{1} b_{2}\right\rangle\right|=2 \sqrt{2}>2$

QM violates local realism!

