Computação Quântica

Problem 3-27 May 2020-27 June 2020

Problem 3

This exercise aims at improving your understanding of some techniques and procedures relevant to the Shor's algorithm.

- The order-finding algorithm as discussed in the lectures resorts to the following oracle:

$$
\mathrm{U}_{\mathrm{a}}(|\mathrm{q}\rangle)=|\operatorname{rem}(\mathrm{qa}, \mathrm{n})\rangle \quad \text { for } 0 \leq \mathrm{q}<\mathrm{n}
$$

Show this is unitary.

- A fundamental remark in the explanation of the order-finding algorithm is captured by the following equality (cf slide 22, CQ-5.pdf).

$$
|1\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1}\left|u_{k}\right\rangle
$$

Explain its relevance on your own words, and prove the equality.

- The following exercise relates the algorithms for period-finding and eigenvalue estimation (discussed in CQ-6.pdf). Consider an operator

$$
\mathrm{U}_{\mathrm{r}}|\mathrm{f}(\mathrm{x})\rangle=|\mathrm{f}(\mathrm{x}+\mathrm{r})\rangle
$$

for a periodic function f with period $0<r<2^{n}$, i.e. such that

$$
f(x+r)=f(x) \quad \text { with } x, r \in\{0,1,2, \cdots\}
$$

Show that the eigenvectors of U_{r} are exactly the states

$$
|\bar{f}(l)\rangle=\frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-\frac{2 \pi i l x}{r}}|f(x)\rangle
$$

(cf slide 4, CQ-6.pdf). Compute the corresponding eigenvalues.

- Can you resort to the result just proved to justify why the period-finding algorithm actually works? Explain.

