Quantum Computation

(Lecture 6)

Luís Soares Barbosa

Quantum Computing Course Unit

Universidade do Minho, 2020

The problem

Finding the period of a function
Let f be a periodic function with period $0<r<2^{n}$:

$$
f(x+r)=f(x) \quad \text { with } x, r \in\{0,1,2, \cdots\}
$$

Given a circuit for an operator $U|x\rangle|y\rangle=|x\rangle|y \oplus f(x)\rangle$, obtain r (with a single query to oracle U).

The algorithm follows the usual pattern

- Start with $|0\rangle|0\rangle$ creates a uniform superposition with $t=\mathcal{O}\left(n+\log \frac{1}{\epsilon}\right)$ qubits;
- apply the oracle;
- estimate the relavant value with $Q F T^{-1}$ and measure the first register;
- (classical) post-processing to retrieve the period.

The algorithm

1. $|0\rangle|0\rangle$
2. Uniform superposition: $\longrightarrow \frac{1}{\sqrt{2^{t}}} \sum_{x=0}^{2^{t}-1}|x\rangle|0\rangle$
3. Oracle: \longrightarrow

$$
\frac{1}{\sqrt{2^{t}}} \sum_{x=0}^{2^{t}-1}|x\rangle|f(x)\rangle \approx \frac{1}{\sqrt{r 2^{t}}} \sum_{l=0}^{r-1} \sum_{x=0}^{2^{t}-1} e^{\frac{2 \pi i x}{r}}|x\rangle|\bar{f}(I)\rangle
$$

4. $Q F T^{-1}: \longrightarrow \frac{1}{\sqrt{r}} \sum_{l=0}^{r-1}\left|\frac{I}{r}\right\rangle|\bar{f}(I)\rangle$
5. Measure first register: $\longrightarrow \frac{\tilde{I}}{r}$
6. Post-processing: continued fractions: $\longrightarrow r$

Details: Step 3

Step 3 is based on the equality

$$
|f(x)\rangle=\frac{1}{\sqrt{r}} \sum_{l=0}^{r-1} e^{\frac{2 \pi i x x}{r}}|\bar{f}(I)\rangle
$$

where state $|\bar{f}(I)\rangle$ is defined as

$$
\frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-\frac{2 \pi i x}{r}}|f(x)\rangle
$$

The equality holds because $\sum_{l=0}^{r-1} e^{\frac{2 \pi i x}{r}}=r$ whenever x is a multiple of r, i.e. $x=m r$, for m integer, reducing

$$
e^{\frac{2 \pi i l m r}{r}}=e^{2 \pi i l m}=1
$$

Otherwise it sums 0 as parcels alternate with positive/negative non integer multiples of 2π

Details: Steps 3 and 6

Step 3

The equality in Step 3 is only an approximation because, in the general case, 2^{t} may not be an integer multiple of r.

Step 6

The value approximated by $\frac{\pi}{r}$ is a rational number, the ratio of two bounded integers. The continued fractions method computes the nearest fraction $\frac{l^{\prime}}{r^{\prime}}$ to $\frac{\tilde{l}}{r}$ making highly probable that r^{\prime} is indeed r.

Analysis

To justify why the algorithm works, note that the definition of $|\bar{f}(I)\rangle$ is almost the Fourier transform over $\left\{0,1,2, \cdots, 2^{n}-1\right\}$.

In general, for $0 \leq x \leq N$ and N an integer multiple of r, e.g. $N=m r$, the Fourier transform of f is

$$
\bar{f}(I)=\frac{1}{N} \sum_{x=0}^{N-1} e^{-\frac{2 \pi i x}{N}} f(x)
$$

Function f being cyclic and $N=m r$ entails

$$
\bar{f}(I)=\frac{1}{N} \sum_{k=0}^{m-1} \sum_{x=0}^{r-1} e^{-\frac{2 \pi i(k r+x)}{m r}} f(x)
$$

Analysis

Note that the term

$$
\sum_{k=0}^{m-1} e^{-\frac{2 \pi i l k r}{m r}}=m \delta_{l, m p} \text { for } p \in Z
$$

i.e. it returns m if I is a multiple of m (i.e. of $\frac{N}{r}$), and 0 otherwise. Actually, if $I=m p$, for na integer p, then

$$
\sum_{k=0}^{m-1} e^{-\frac{2 \pi i m p k r}{m r}}=\sum_{k=0}^{m-1} e^{-2 \pi i p k}=\sum_{k=0}^{m-1} 1=m
$$

Otherwise the parcels in the sum will take the form

$$
e^{\frac{0}{m}}, e^{\frac{-2 l \pi i}{m}}, e^{\frac{-41 \pi i}{m}} \ldots, e^{\frac{-2(m-1) I \pi i}{m}}
$$

corresponding to angles regularly spanning the whole circle which cancel two by two.

Analysis

This entails

$$
\bar{f}(I)= \begin{cases}\frac{\sqrt{N}}{r} \sum_{x=0}^{r-1} e^{-\frac{2 \pi i x x}{N}} f(x) & \Leftarrow I \text { is a multiple of } m \\ 0 & \Leftarrow \text { otherwise }\end{cases}
$$

Making $N=r$ we retrieve, for $I \in\{0,1,2, \cdots, r-1\}$ the integer multiples of $1 \ldots$,

$$
\bar{f}(I)=\frac{1}{\sqrt{r}} \sum_{x=0}^{r-1} e^{-\frac{2 \pi i l x}{r}} f(x)
$$

Shift invariance

The crucial argument is that the Fourier transform verifies a shift invariance property, which, in a broader sense, is stated as follows:

Shift invariance Given a group G and a subgroup S of G, if a function f defined in G is constant on the cosets of S, then its Fourier transform is invariant over cosets of S.

Recall: coset
The coset of a subgroup S of a group ($G,$.) wrt $g \in G$ is

$$
g S=\{g . s \mid s \in S\}
$$

Shift invariance

Proof
Let $S \subseteq G$, the latter indexing the states in a orthonormal basis, and consider the general expression of the QFT

$$
\sum_{s \in S} \alpha_{s}|s\rangle \mapsto \sum_{g \in G} \beta_{g}|g\rangle
$$

where

$$
\beta_{g}=\sum_{s \in S} \alpha_{s} e^{\frac{2 \pi i g s}{|G|}}
$$

Applying operator $U_{k}|x\rangle=|x+r\rangle$ yields

$$
U_{k} \sum_{s \in S} \alpha_{s}|s\rangle=\sum_{s \in S} \alpha_{s}|s+r\rangle
$$

whose Fourier transform is

$$
\sum_{g \in G} \sum_{s \in S} e^{\frac{2 \pi i g(s+r)}{|G|}}|g\rangle=\sum_{g \in G} e^{\frac{2 \pi i g r}{|G|}} \sum_{s \in S} e^{\frac{2 \pi i g s}{|G|}}|g\rangle=\sum_{g \in G} e^{\frac{2 \pi i g r}{|G|}} \beta_{g}|g\rangle
$$

Shift invariance

Proof

Clearly, if we are representing the Fourier transform of a function f is constant in each coset, i.e.

$$
f(s+r)=f(r) \text { for all } s \in\left\{s^{\prime}+r \mid s \in S\right\}
$$

the (absolute values) of amplitudes

$$
e^{\frac{2 \pi i g r}{16 T}} \beta_{g} \text { and } \beta_{g}
$$

coincide.
Thus, the Fourier transform of f is invariant in cosets

Order-finding

Order-finding as period estimation
The kernel of the algorithm for order-finding can be seen is an instance of period estimation for function

$$
f_{a}(k)=a^{k}(\bmod n)
$$

as the period is exactly the order:

$$
a^{k+r}(\bmod n)=a^{k} a^{r}(\bmod n)=a^{k}(\bmod n)
$$

Discrete logarithm

The discrete logarithm problem Determine t, given a and $b=a^{t}$.

This problem can be solved as an instance of period estimation for a much more complex function:

$$
f_{a}(x, y)=a^{t x+y}(\bmod n)
$$

through the observation that f is periodic

$$
f(x+k, y-k t)=f(x, y)
$$

with period $(k,-k t)$, for each integer k.

Afterthoughts

In the next lecture, we'll show that both the period estimation and discrete logarithm problems, and many others indeed, are instances of more general one:
the hidden subgroup problem

But first, we shall exercise our skills to deal with QFT based algorithms with a simple, but illustrative example.

The exercise

The problem
Build a quantum circuit to compute

$$
|x\rangle \mapsto\left|x+y\left(\bmod 2^{n}\right)\right\rangle
$$

where y is a constant and $0 \leq x \leq 2^{n}$

The strategy

Build a quantum circuit to compute

$$
|x\rangle \mapsto \underbrace{\frac{1}{\sqrt{2^{n}}} \sum_{k} e^{\frac{2 \pi i k x}{2^{n}}} \mapsto \underbrace{\frac{1}{\sqrt{2^{n}}} \sum_{k} e^{\frac{2 \pi i k(x+y)}{2^{n}}}|k\rangle}_{\text {phase shifts }} \mapsto \underbrace{\left|x+y\left(\bmod 2^{n}\right)\right\rangle}_{Q T F-1}}_{Q F T}
$$

The circuit

The phase shifts requires the application of

$$
|k\rangle \mapsto e^{\frac{2 \pi i k y}{2 \gamma}}|k\rangle
$$

Writing $k=\sum_{i=0}^{n-1} k_{i} 2^{i}$ and $y=\sum_{j=0}^{n-1} y_{j} 2^{j}$, the product boils down to

$$
k y=\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} k_{i} y_{j} 2^{i+j}
$$

which, written in terms of the qubits used to represent $|k\rangle$, corresponds to the unitary operator

$$
U=\bigotimes_{i}\left|k_{i}\right\rangle \mapsto \bigotimes_{i}\left(\prod_{j} e^{\frac{2 \pi i y_{i} k_{i}}{2 n-i j}}\left|k_{i}\right\rangle\right)
$$

The circuit

Operator

$$
U=\bigotimes_{i}\left|k_{i}\right\rangle \mapsto \bigotimes_{i}\left(\prod_{j} e^{\frac{2 \pi i y_{j} k_{i}}{2 n-i j}}\left|k_{i}\right\rangle\right)
$$

can be decomposed in phase shifts over state $|k\rangle$ controlled by y : i.e. for each qubit $\left|k_{i}\right\rangle$ and bit y_{j}, apply a gate R_{n-i-j} controlled by y_{j}, where

$$
R_{I}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i}{2^{\prime}}}
\end{array}\right]
$$

The circuit

Clearly, $R_{I}=I$ for all $I \leq 0$ and therefore the rotation is not applied for every pair (i, j) such that $i+j \geq n$, yielding the following circuit for $n=3$:

The circuit

If y is a power of 2 less phase shift gates will be necessary. In particular, if $y=2^{n}$ a single shift is required because only $y_{n-1} \neq 0$, e.g. for $n=3$,

$$
\begin{aligned}
U\left(\bigotimes_{i}\left|k_{i}\right\rangle\right)= & \bigotimes_{i}\left(\prod_{j} e^{\frac{2 \pi i y_{j} k_{i}}{2^{3-i-j}}}\left|k_{i}\right\rangle\right) \\
= & \left(e^{\frac{2 \pi i y_{0} k_{0}}{2^{2}}} \times e^{\frac{2 \pi i y_{1} k_{0}}{2^{2}}} \times e^{\frac{2 \pi i y_{2} k_{0}}{2^{1}}}\right)\left|k_{0}\right\rangle \\
& \otimes\left(e^{\frac{2 \pi i y_{0} k_{1}}{2^{2}}} \times e^{\frac{2 \pi i y_{1} k_{1}}{2^{1}}} \times e^{\frac{2 \pi i y_{2} k_{1}}{2^{0}}}\right)\left|k_{1}\right\rangle \\
& \otimes\left(e^{\frac{2 \pi i y_{0} k_{2}}{2^{1}}} \times e^{\frac{2 \pi i y_{1} k_{2}}{2^{0}}} \times e^{\frac{2 \pi i y_{2} k_{2}}{2^{-1}}}\right)\left|k_{2}\right\rangle
\end{aligned}
$$

