Quantum Computation

(Lecture 5)

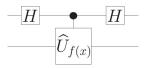
Luís Soares Barbosa

Quantum Computing Course Unit

Universidade do Minho, 2020

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort to the following technique:

- Take a controlled version of an operator U_f and prepare the target qubit with an eigenvector;
- with the effect of pushing up (or kicking back) the associated eigenvalue to the state of the control qubit as in



$$U_{f}\left(a_{0}|0\rangle+a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \; = \; \left((-1)^{f(0)}a_{0}|0\rangle+(-1)^{f(1)}a_{1}|1\rangle\right) \; \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

The question

Can this technique be generalised to estimate the eigenvalues of an arbitrary, *n*-qubit unitary operator U?

Let cU be a controlled version of a unitary operator U, and $(|\phi\rangle, e^{2\pi i w})$ an eigenvector, eigenvalue pair. Then,

$$\begin{array}{c|c} cU|0\rangle|\varphi\rangle &= |0\rangle|\varphi\rangle \\ cU|1\rangle|\varphi\rangle &= |1\rangle U|\varphi\rangle &= |1\rangle e^{2\pi i w}|\varphi\rangle &= e^{2\pi i w}|1\rangle|\varphi\rangle \\ \\ \alpha|0\rangle + \beta|1\rangle & \qquad \alpha|0\rangle + e^{2\pi i \omega}\beta|1\rangle \\ \\ |\psi\rangle & \qquad U & \qquad |\psi\rangle \end{array}$$

The eigenvalue of U is encoded into the phase of the control qubit of cU.

The eigenvalue estimation estimation

Given a circuit for an operator U, and an eigenvector, eigenvalue pair, $(|\phi\rangle, e^{2\pi i w})$, determine a good estimate for w.

The idea

Prepare a state

$$\begin{split} &\frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n-1} e^{2\pi i w y} |y\rangle \ = \\ &\left(\frac{|0\rangle + e^{2\pi i (2^{n-1}w)}|1\rangle}{\sqrt{2}}\right) \otimes \left(\frac{|0\rangle + e^{2\pi i (2^{n-2}w)}|1\rangle}{\sqrt{2}}\right) \otimes \cdots \otimes \left(\frac{|0\rangle + e^{2\pi i w}|1\rangle}{\sqrt{2}}\right) \end{split}$$

and resort to QFT^{-1} to obtain an estimate for w.

To prepare this state note that

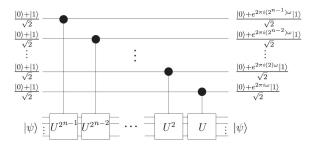
- $| \phi \rangle$ is also an eigenvector of U^2 , with eigenvalue $(e^{2\pi i w})^2 = e^{4\pi i w}$.
- in general, this applies to U^q , with eigenvalue $e^{2q\pi i w}$, for any integer q.

Thus, it is enough to build a controlled-U gate, set the target qubit to the eigenstate $|\phi\rangle$, and compute for the relevant i,

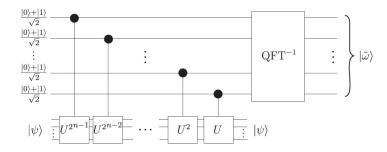
$$c U^{2^j} \left(\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}} \right) | \phi \rangle \right) \; = \; \left(\frac{|0\rangle + e^{2\pi i (2^j w)} |1\rangle}{\sqrt{2}} \right)$$

The envisaged circuit implements a sequence of controlled- U^{2^j} gates each controlled on the j-significant bit of

$$x = 2^{n-1}x_{n-1} + \cdots + 2x_1 + x_0$$



\dots followed by QFT^{-1}



Observe that

• Applying this sequence of controlled- U^{2^j} gates is equivalent to the successive application of U a total of x times, as captured by the following cU^x gate:

$$cU^{\times}(|x\rangle|\phi\rangle) = (|x\rangle U^{\times}|\phi\rangle)$$

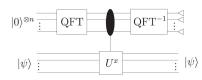
• On the other hand, the control qubits are prepared through $H^{\otimes n}|0\rangle^{\otimes n}$ as

$$\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\otimes\cdots\otimes\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)$$

which can be accomplished by QFT again:

$$H^{\otimes n}|0\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n-1} |x\rangle = QFT|0\rangle^{\otimes n}$$

The algorithm



- 1. Prepare a n-qubit register, identified as the control register, with $|0\rangle^{\otimes n}$ and apply QFT to it.
- 2. Apply cU^{\times} to the eigenstate $|\phi\rangle$ controlled on the state of the control register.
- 3. Apply QFT^{-1} to the control register.
- 4. Measure the control register to obtain a string of bits encoding the integer x.
- 5. Output the value $\tilde{\mathbf{w}} = \frac{\mathbf{x}}{2^n}$ as an estimate for \mathbf{w} .

Going generic

What if $|\phi\rangle$ is an arbitrary state?

By the spectral theorem one knows that the eigenvectors $\{|\phi_1\rangle, |\phi_2\rangle, \cdots\}$ of U form a basis for the 2^n -dimensional vector space on which U acts. Thus, one may write

$$|\phi\rangle = \sum_{j=0}^{2^n-1} \alpha_j |\phi_j\rangle$$

The algorithm above maps, for each eigenvector of U,

$$|0\rangle^{\otimes}|\phi_{j}\rangle \mapsto |\tilde{w}\rangle|\phi_{j}\rangle$$

which, by linearity, entails

$$|\phi\rangle \ \mapsto \ \sum_{j=0}^{2^n-1} \alpha_j |\tilde{w}\rangle |\phi_j\rangle$$

Tracing out the second register, leaves the first register in the mixture consisting of the state $|\tilde{w}\rangle$ with probability $\|\alpha_i\|^2$.

The order-finding problem

Let's discuss now an application of the eigenvalue estimation to a problem which is central to the landmark Shor's algorithm for prime factorization.

The order-finding problem

Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order of a modulo n.

Preliminaries

Order of an element in a group

The order of an element a in a group $G = (A, \theta, e, ^{-1})$ is the least positive integer r such that $a^r = e$, if any such r exists

Examples

Every element of the permutation group of degree 4

(bijections onto
$$\{1, 2, 3, 4\}, \cdot, id, ^{-1}$$
)

has dimension 4. For example, consider element $(1, 2, 3, 4) = \{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 1\}$

$$(1,2,3,4)^1 = (1,2,3,4) \neq id$$

 $(1,2,3,4)^2 = (1,3)(2,4) \neq id$
 $(1,2,3,4)^1 = (1,4,3,2) \neq id$
 $(1,2,3,4)^4 = id$

Preliminaries

- In $\mathcal{Z} = (\mathcal{Z}, \times, 1, ^{-1})$ every element but 0 has order ∞ .
- Consider the group of integers modulo *n*,

$$\mathcal{Z}_n = (\{1, 2, \cdots, n-1\}, \times_n, 1, ^{-1})$$

Note then when defining the order of a as the least positive integer r such that $a^r = 1$, the exponentiation is taken modulo n, and therefore the equality can be written as

$$a^r = 1 \pmod{n}$$

where $x = y \pmod{n}$ abbreviates $\operatorname{rem}(x, n) = \operatorname{rem}(y, n)$ which is the equality in \mathcal{Z}_n

So, e.g. the order of 4 in \mathcal{Z}_5 is 2 because

$$4^1 = 4 \pmod{5}$$

$$4^2 = 1 \pmod{5}$$

As any integer k can be reduced modulo n by taking the reminder

after division of k by n, the notion of order also applies to any integer a st gcd(a, n) = 1. It is called the order of a modulo n. Actually 1 will appear in the sequence

rem
$$(a, n)$$
, rem (a^2, n) , rem (a^3, n) , ...

after what the sequence repeats itself in a periodic way.

The order-finding problem

Given two coprime integers a and n (i.e. st gcd(a, n) = 1), find the order of a modulo n.

The order-finding problem is basically an application of eigenvalue estimation for operator

$$U_a(|q\rangle) = |\text{rem}(qa, n)\rangle \quad \text{for } 0 \le q < n$$

Clearly, U_a is unitary: being a coprime with n, a has an inverse modulo n and, thus, is reversible.

Note that U_a can be extended reversibly to an implementation in a circuit over m qubits $(2^m > n)$ making

$$U_a(|q
angle) \ = \ |{\sf rem}\ (qa,n)
angle \quad {\sf for}\ 0 \le q < n$$
 $U_a(|q
angle) \ = \ |q
angle \quad {\sf for}\ q \ge n$

In any case, let us focus on the action of U_a restricted to the state space spanned by $\{|0\rangle, |1\rangle, \cdots, |n-1\rangle\}$.

Since $a^r = 1 \pmod{n}$,

$$U_a^r(|q\rangle) = |\text{rem}(qa^r, n)\rangle = |q\rangle$$

i.e. U_a is the rth root of the identity operator I.

It can be shown that the eigenvalues λ of such an operator satisfy $\lambda^r = 1$, which means they take the form $e^{2\pi i \frac{k}{r}}$, for some integer k.

Thus, suppose one is able to prepare the state

$$|u_k\rangle = \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2\pi i \frac{k}{r} q} |\text{rem}(a^q, n)\rangle$$

Then, observing for the last step that

$$e^{2\pi i \frac{k}{r}r} |\text{rem}(a^{q+1}, n)\rangle = e^{2\pi i \frac{k}{r}0} |\text{rem}(a^0, n)\rangle$$

compute

$$\begin{aligned} U_{a}|u_{k}\rangle &= \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2\pi i \frac{k}{r} q} U_{a}|\text{rem}(a^{q}, n)\rangle \\ &= \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2\pi i \frac{k}{r} q}|\text{rem}(a^{q+1}, n)\rangle \\ &= e^{-2\pi i \frac{k}{r}} \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2\pi i \frac{k}{r} (q+1)}|\text{rem}(a^{q+1}, n)\rangle \\ &= e^{-2\pi i \frac{k}{r}}|u_{k}\rangle \end{aligned}$$

... concluding that

 $|u_k
angle$ is an eigenstate for U_a with eigenvalue $e^{-2\pi i rac{k}{r}}$

Thus, for any value $0 \le k \le r - 1$, the eigenvalue estimation algorithm will compute an approximation k/r to k/r to k/r mapping

$$|0\rangle|u_k\rangle \mapsto |\widetilde{k/r}\rangle|u_k\rangle$$

However ...

Without knowing r we do not know how to prepare $|u_k\rangle$.

Fortunately, it is not necessary!

Instead of preparing an eigenstate corresponding to an eigenvalue $e^{2\pi i \frac{k}{r}}$ for a randomly selected $k \in \{0,1,\cdots,r-1\}$, it suffices to prepare a uniform superposition of the eigenstates

Then the eigenvalue estimation algorithm will compute a superposition of these eigenstates entangled with estimates of their eigenvalues.

Thus, when a measurement is performed, the result is an estimate of a random eigenvalue.

Question

How to prepare such a superposition?

Note that

$$\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |u_k\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} \frac{1}{\sqrt{r}} \sum_{q=0}^{r-1} e^{-2\pi i \frac{k}{r} q} |\text{rem}(a^q, n)\rangle$$

Because

$$|\text{rem}(a^q, n)\rangle = |1\rangle \text{ iff } \text{rem}(q, n)$$

the amplitude of $|1\rangle$ in the above state is the sum over the terms for which q=0 (because r-1< n)

$$\frac{1}{\sqrt{r}} \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i \frac{k}{r} 0} |\text{rem}(a^q, n)\rangle = \frac{1}{r} \sum_{k=0}^{r-1} = 1$$

If the amplitude of $|1\rangle$ is 1, this means that the amplitudes of all other basis states are 0, yielding

$$|1\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} |u_k\rangle$$

Thus, the eigenvalue estimation algorithm maps

$$|0\rangle|1\rangle \ = \ |0\rangle \left(\frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|u_k\rangle\right) \ = \ \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|0\rangle|u_k\rangle \ \mapsto \ \frac{1}{\sqrt{r}}\sum_{k=0}^{r-1}|\widetilde{k/r}\rangle|u_k\rangle$$

Thus, after executing the eigenvalue estimation algorithm the first register contains a uniform superposition of states $|\widetilde{k/r}\rangle$ for $k \in \{0, 1, \cdots, r-1\}$.

Measuring this register yields an estimate of $\frac{k}{r}$ for some k selected uniformly at random as $\frac{x}{2^n}$.

Finally, to estimate r one resorts to the following result in number theory:

Estimating r

Theorem: Let r be a positive integer, and take integers k_1 to k_2 selected independently and uniformly at random from $\{0, 1, \dots, r-1\}$. Let c_1, c_2, r_1, r_2 be integers st $\gcd(r1, c1) = \gcd(r2, c2) = 1$ and

$$\frac{k_1}{r} = \frac{c_1}{r_1}$$
 and $\frac{k_2}{r} = \frac{c_2}{r_2}$

Then, $r = \text{lcm}(r_1, r_2)$ with probability at least $\frac{6}{\pi^2}$.

Thus

- To obtain $\frac{c_1}{r_1}$ from k/r, i.e. the nearest fraction approximating $\frac{k}{r}$ up to some precision dependent on the number of qubits used, one resorts to the continued fractions method.
- As a second pair (c_2, r_2) is needed, the whole algorithm is repeated.

The order-finding algorithm

- 1. Prepare a *n*-qubit register, identified as the control register, for an integer *n* st $2^n > 2r^2$, with $|0\rangle^{\otimes n}$.
- 2. Prepare a *n*-qubit register, identified as the target register, with $|1\rangle$.
- 3. Apply QFT to the control register, cU_a^{\times} to the target and control registers, and QFT^{-1} to the control register.
- 4. Measure the control register to retrieve an estimate $\frac{x_1}{2^n}$ of a random integer multiple of $\frac{1}{r}$.
- 5. With the continued fractions method obtain integers c_1, r_1 such that

$$\left|\frac{x_1}{2^n} - \frac{c_1}{r_1}\right| \le \frac{1}{2^{\frac{n-1}{2}}}$$

Fail otherwise.

- 6. Repeat steps 1. to 6. to find another integer x_2 , and a second pair (c_2, r_2) st $\left|\frac{x_2}{2^n} \frac{c_2}{r_2}\right| \le \frac{1}{2^{\frac{n-1}{2}}}$. Fail otherwise.
- 7. Compute $r = \text{lcm}(r_1, r_2)$. If rem $(a^r, n) = 1$ output r; fail otherwise.

Afterthoughts

How can the algorithm fail?

- The eigenvalue estimation algorithm produces a bad estimate of $\frac{k}{r}$. This occurs with a bounded probability that can be made smaller by an increase in the size of the circuit.
- The value found is not r itself, but a factor of r, which will be the
 case if the computed c₁, c₂ have common factors, eventually
 requiring additional repetitions of the algorithm

Recall

Like all quantum algorithms, this one is probabilistic: it gives the correct answer with high probability, and the probability of failure can be decreased by repeating the algorithm.

Afterthoughts

Cost

 $O((\log n)^3)$, the major cost coming from the modular exponentiation:

- The critical computation is the $cU_a^{2^j}$ operations, for $j \in \{0, 1, 2, \cdots, 2^{n-1}\}$, which constitutes cU_a^x and requires 2^j applications of operator U_a .
- However, $cU_a^{2^j} = cU_{a^{2^j}}$ multiplying by rem (a, n) for 2^j times is equivalent to multiplying by rem (a^{2^j}, n) only once.
- rem (a^{2^j}, n) can be computed with j multiplications modulo n (exponential improvement over multiplying rem (a, n) for 2^j times).
- QFT requires $O(\log n)^2$) gates.

The classical algorithm is exponential on n: the best known one uses $e^{O(\sqrt{\log n}\sqrt{(\log\log(n))})}$ classical gates.

Factorization

In his famous 1994 paper, Peter Shor proved that it is possible to factor a *n*-bit number in time that is polynomial to *n*.

The factorization problem

Given an integer n, find positive integers $p_1, p_2, \dots, p_m, r_1, r_2, \dots, r_m$ such that

- Integers p_1, p_2, \cdots, p_m are distinct primes;
- and, $\mathbf{n} = p_1^{r_1} \times p_2^{r_2} \times \cdots \times p_m^{r_m}$.

Note that one may assume n to be odd and contain at least two distinct odd prime factors (why?)

Moreover, the test for primality can be done classically in polynomial time.

Factorization

The factoring problem can be reduced to

The odd non-prime-power integer splitting problem

Given an odd integer n, with at least two distinct prime factors, compute two integers

$$1 < n_1 < n$$
 and $1 < n_2 < n$

st
$$n = n_1 \times n_2$$
.

Miller proved in 1975 that this problem reduces probabilistically to the order-finding problem, discussed above.

All those reductions are classical: only the sampling estimates problem is quantum.

Reduction to order-finding

- Choose randomly, with uniform probability, an integer a and compute its order r.
- If r is even, $a^r 1$ can be factorized as

$$a^{r}-1 = (a^{\frac{r}{2}}-1)(a^{\frac{r}{2}}+1)$$

• As r is the order of a, n divides $a^r - 1$, which means n must share a factor with $(a^{\frac{r}{2}} - 1)$, or $(a^{\frac{r}{2}} + 1)$, or both.

This factor can be extracted by the Euclides algorithms which efficiently returns $gcd(a^r - 1, n)$.

Question

But how can be sure such a factor in non trivial?

Reduction to order-finding

- Clearly n does not divide (a^{r/2} 1).
 Actually, if rem (a^{r/2} 1, n) = 0, r/2, rather than r, would be the order of a.
- However, n may divide $(a^{\frac{r}{2}}+1)$, i.e. $a^{\frac{r}{2}}=1 \pmod{n}$ and not share any factor with $(a^{\frac{r}{2}}-1)$.

Thus, the reduction is probabilistic according to the following

Theorem: Let $n=p_1^{r_1}\times p_2^{r_2}\times\cdots\times p_m^{r_m}$ be the prime factorization of an odd number with $m\geq 2$. Then for a random a, chosen uniformely as before, the probability that its order is even and $a^{\frac{r}{2}}\neq 1 \pmod{n}$ is at least $(1-\frac{1}{2^m}\geq \frac{9}{16})$.

For number theoretic results see N. Koblitz. *A Course in Number Theory and Cryptography*, Springer, 1994.

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer

Proc. 35th Annual Symp. on Foundations of Computer Science, IEEE Computer Society Press, pp. 124-134 (1994)

was a turning point in quantum computing for its spectacular decrease of the time complexity of factoring from $\mathcal{O}(e^{\sqrt[3]{n}})$ to $\mathcal{O}(n^3 \log n)$, with potential impact in cryptography.

12301866845301177551304949583849627207
72853569595334792197322452151726400507
26365751874520219978646938995647494277
40638459251925573263034537315482680791
70261221429134616704292143116022212404
7927473779408066535141959745985
6902143413 =
? * ?

- 1. Choose $1 \le a \le n-1$ randomly.
- 2. If gcd(a, n) > 1, then return gcd(a, n).
- 3. If gcd(a, n) = 1, then use the order-finding algorithm to compute r the order of a wrt n.
- 4. If r is odd or $a_{\frac{r}{2}} = -1 \pmod{n}$ then return to 1. else return $\gcd(a^{\frac{r}{2}} - 1, n)$ and $\gcd(a^{\frac{r}{2}} + 1, n)$.

Shor's approach to estimate a random integer multiple of $\frac{1}{r}$ in his original paper was different from the one discussed in this lecture, as an application of the eigenvalue estimation algorithm.

Shor's approach (based on period finding)

Create a state

$$\sum_{x=0}^{2^{n}-1} \frac{1}{\sqrt{2^{n}}} |x\rangle |\operatorname{rem}(a^{x}, n)\rangle$$

which is shown to be re-written as

$$\sum_{b=0}^{r-1} \left(\frac{1}{\sqrt{2^n}} \sum_{z=0}^{m_b-1} |zr+b\rangle \right) |\operatorname{rem}(a^x, n)\rangle$$

where m_b is the largest integer st $(m_b-1)r + b \le 2^n - 1$.

Shor's approach (based on period finding)

• Measuring the target register yields rem (a^b, n) for b chosen uniformly at random from $\{0, 1, 2, \cdots, r-1\}$, and leaves the control register in

$$\frac{1}{\sqrt{m_b}}\sum_{z=0}^{m_b-1}|zr+b\rangle$$

• Apply $QFT_{2^n}^{-1}$ to the control register Note that, if r, m_b were known (!), applying $QFT_{m_br}^{-1}$ would lead to

$$\sum_{i=0}^{r-1} e^{-2\pi i \frac{b}{r} j} |m_b j\rangle$$

i.e. only values x such that $\frac{x}{rmb} = \frac{i}{r}$ would be measured.

• Measure x and output $\frac{x}{2^n}$.

Note that in both approaches the circuit is the same.

The only difference is the basis in which the state of the system is analysed:

- the eigenvector basis
- the computational basis in Shor's original algorithm.

Shor's original algorithm is based on the period finding algorithm, which is another application of phase estimation

(see [Nielsen & Chuang, 2010] for a complete account)

In all cases, the underlying quantum component is, of course, the QFT.

Continued Fractions

Method to approximate any real number t with a sequence of rational numbers of the form

$$[a_0, a_1, \cdots, a_p]$$
 defined by $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdots + \frac{1}{a_p}}}}$

computed inductively as follows

$$egin{array}{lll} a_0 &=& \lfloor t
floor & r_0 &=& t-a_0 \ a_j &=& \left\lfloor rac{1}{r_{j-1}}
floor & r_j &=& rac{1}{r_{j-1}} - \left\lfloor rac{1}{r_{j-1}}
floor \end{array}
ight.$$

The sequence $[a_0, a_1, \dots, a_p]$ is called the *p*-convergent of *t*. If $r_p = 0$ the continued fraction terminates with a_p and $t = [a_0, a_1, \dots, a_p]$,

Continued Fractions

Example: $\frac{47}{13} = [3, 1, 1, 1, 1, 2]$

$$\begin{aligned} &\frac{47}{13} = 3 + \frac{8}{13} = 3 + \frac{1}{\frac{13}{8}} \\ &= 3 + \frac{1}{1 + \frac{5}{8}} = 3 + \frac{1}{1 + \frac{1}{\frac{1}{\frac{5}{5}}}} \\ &= 3 + \frac{1}{1 + \frac{1}{1 + \frac{3}{5}}} = 3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{\frac{1}{1 + \frac{1}{1 + \frac{1$$

Continued Fractions

Theorem: The expansion terminates iff *t* is a rational number.

[which makes continued fractions the *right*, finite expansion for rational numbers, differently form decimal expansion]

Theorem:
$$[a_0, a_1, \cdots, a_p] = \frac{p_j}{q_j}$$
 where

$$p_0 = a_0, q_0 = 1$$

 $p_1 = 1 + a_0 a_1$

$$p_1 = 1 + a_0 a_1$$

$$p_j = a_j p_{j-1} + p_{j-2}, \quad q_j = a_j q_{j-1} + q_{j-2}$$

Theorem: Let x and $\frac{p}{q}$ be rationals st

$$\left|x-\frac{p}{q}\right|\leq \frac{1}{2q^2}.$$

Then, $\frac{p}{q}$ is a convergent of the continued fraction for x.