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The circuit model

Classical reversible circuits (which can simulate any non-reversible one
with modest overhead) generalise to quantum circuits where

• logical qubits are carried along wires,

• quantum gates, corresponding to unitary transformations, act on
them, and

• measurements result in a state |i〉, with probability given by the
norm squared of its amplitude, ‖ai‖2, together with a classical label
"i " indicating which outcome was obtained.
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A parenthesis: Unitary transformations

( ...
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Unitary transformations

Gates encode transformations that

• are linear:

U (α1|v1〉+ · · ·+ αk |vk〉) = α1U |v1〉+ · · ·+ α2U |vk〉

• and map orthogonal subspaces to orthogonal subspaces (cf, unit
length vectors map to unit length vectors)

These properties hold iff U preserves inner products:

〈v |U†U |w〉 = 〈v |w〉

which entails
U†U = I U is unitary
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Unitary transformations

• Not only unitary operators map orthonormal bases to orthonormal
bases, since they preserve the inner product, but also any linear
transformation with such behaviour is unitary.

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the ith column
is the image of U |i〉). equivalently, rows are orthonormal (why?)

• Both U1U1 and U1 ⊗ U2 are unitary, if Ui are; but linear
combinations of unitary operators, however, are not in general
unitary.

Unitary transformations are reversible
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Unitary transformations

The no-cloning theorem: well-known consequence of linearity

Let U(|a〉|0〉) = |a〉|a〉 and consider state |c〉 = 1√
2
(|a〉+ |b〉) for |a〉 and

|b〉 orthogonal. Then

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

This result, however, does not preclude the construction of a known
quantum state from a known quantum state.
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End of parenthesis
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Quantum gates

A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation
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1-Gates

The action of a 1-gate U on a quantum state |φ〉 can be thought of as a
rotation of the Bloch vector for |φ〉 to the Bloch vector for U |φ〉, eg.

Exemple: X
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A parenthesis: Representation in the Bloch sphere

( ...
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The Bloch sphere

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])
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The Bloch sphere
The state of a quantum bit is described by a complex unit vector in a
2-dim Hilbert space, which, up to a physically irrelevant global phase
factor, can be written as

|ψ〉 = cos
θ

2︸ ︷︷ ︸
α

|0〉+ e iϕ sin
θ

2︸ ︷︷ ︸
β

|1〉

where 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π, and depicted as a point on the surface of
a 3-dim Bloch sphere, defined by θ and ϕ.
The Bloch vector |ψ〉 has

• Spherical coordinates:
x = ρ sin θ cosϕ y = ρ sin θ sinϕ = z = ρ cos θ

• Measurement probabilities:

‖α‖2 =
(

cos
θ

2

)
=

1

2
+

1

2
cos θ

‖β‖2 =
(

sin
θ

2

)
=

1

2
−

1

2
cos θ
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The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (ϕ),
and does not affect which state the arrow will collapse to, when
measured.
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The Bloch sphere

Representing |ψ〉 = α|0〉+ β|1〉
Express |ψ〉 in polar form

|ψ〉 = ρ1e iϕ1 |0〉+ ρ2e iϕ2 |1〉

and eliminate one of the four real parameters multiplying by e−iϕ1

|ψ〉 = ρ1|0〉+ ρ2e i(ϕ2−ϕ1)|1〉 = ρ1|0〉+ ρ2e iϕ|1〉

making ϕ = ϕ2 −ϕ1.

Switch back the coefficient of |1〉 to Cartesian coordinates and compute
the normalization constraint

‖ρ1‖2 + ‖a + ib‖2 = ‖ρ1‖2 +(a − ib)(a + ib) = ‖ρ1‖2 +a2 + b2 = 1

which is the equation of a unit sphere in Real 3-dim space with Cartesian
coordinates: (a, b, ρ1).
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The Bloch sphere

Back to polar,

x =ρ sin θ cosϕ

y =ρ sin θ sinϕ

z =ρ cos θ

So, recalling that ρ = 1,

|ψ〉 = z |0〉+ (a + ib)|1〉
= cos θ|0〉+ sin θ(cosϕ− i sinϕ)|1〉
= cos θ|0〉+ e iϕ sin θ|1〉

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1:

Let |ψ ′〉 be the opposite point on the sphere with polar coordinates
(1, π− θ ′, ϕ+ π)

|ψ ′〉 = cos (π− θ ′)|0〉+ e i(ϕ+π) sin (π− θ ′)|1〉
= − cos θ ′|0〉+ e iϕe iπ sin θ ′|1〉
= − cos θ ′|0〉+ e iϕ sin θ ′|1〉
= −|ψ〉

|ψ〉 = cos
θ

2
|0〉+ e iϕ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π
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End of parenthesis
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1-Gates

The Hadamard gate

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 = 1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)

Note that HH = I
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1-Gates

The phase shift gate

Rφ =
1√
2

[
1 0
0 e iφ

]

Rφ |0〉 = |0〉
Rφ |1〉 = e iφ|1〉

The T (or π
8

) gate

T = Rπ
4

=

[
1 0
0 e i

π
4

]
which, up to global phase, is equivalent to[

e i
π
8 0

0 e i
π
8

]
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1-Gates

Pauli gates

I = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
X = |1〉〈0|+ |0〉〈1| =

[
0 1
1 0

]
Z = |0〉〈0|− |1〉〈1| =

[
1 0
0 −1

]
= Rπ

Y = i(−|1〉〈0|+ |0〉〈1|) =
[

0 −i
i 0

]
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1-Gates

Rotation gates
Correspond to rotations about the three axes of the Bloch sphere, and
are computed as Pauli gates squared.

Re(θ) =̂ e
−iθE

2 = cos

(
θ

2

)
I − i sin

θ

2
E

where e =̂ x , y , z and E =̂ X ,Y ,Z .

because, for any real number r and matrix R st R2 = I , which is the case
for X , Y , and Z ,

e irR = cos(r)I + i sin(r)R
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1-Gates

Rotation gates as matrices in the computational basis

Rx(θ) =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]

Ry (θ) =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ]

Rz(θ) =

[
e−i θ2 0

0 e i
θ
2

]
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1-Gates

Compute Rz(θ)|ψ〉 for |ψ〉 = cos
(
σ
2

)
|0〉+ e iγ sin

(
σ
2

)
|1〉

[
e−i θ2 0

0 e i
θ
2

] [
cos
(
σ
2

)
e iγ sin

(
σ
2

)] =

[
e−i θ2 cos

(
σ
2

)
e i
θ
2 e iγ sin

(
σ
2

)]

= e−i θ2

[
cos
(
σ
2

)
e iθe iγ sin

(
σ
2

)]
= e−i θ2

(
cos
(σ

2

)
|0〉 + e i(γ+θ) sin

(σ
2

)
|1〉
)

As global phase is insignificant, the angle mapping γ 7→ γ+ θ is a
rotation of θ around the z-axis of the Bloch sphere.



Quantum gates and the circuit model Universal gates The computational model The Deutsch-Jozsa Algorithm

1-Gates

Theorem
Let U be a 1-gate, and v ,w any two non-parallel axes of the Bloch
sphere. Then there exist real numbers α,βγ, δ st

U = e iαRv (β)Rw (γ)Rv (δ)

which means that any 1-gate can be expressed as a sequence of two
rotations about an axis and one rotation about another non parallel axis,
multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.
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2-gates: CNOT

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT = |0〉〈0|⊗ I + |1〉〈1|⊗ X

= |0〉〈0|⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1|⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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2-gates: CNOT

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT

(
1√
2
(|0〉+ |1〉)⊗ |0〉

)
= CNOT

(
1√
2
(|00〉+ |10〉)

)
=

1√
2
(|00〉+ |11〉)

Since it is its own inverse, it can take an entangled state to an
unentangled one.
Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U ⊗ V ) |v〉 is entangled iff |v〉 is
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2-gates: CNOT

The notions of control/target bit in CNOT are arbitrary: they depend on
what basis is considered. The standard behaviour is obtained in the
computational basis. However, roles are interchanged in the Hadamard
basis in which the effect of CNOT is

|++〉 7→ |++〉 |+−〉 7→ |−−〉 |−+〉 7→ |−+〉 |−−〉 7→ |+−〉

Exercise

80 5 Quantum State Transformations

standard basis elements, the effect of the controlled gate can be somewhat counterintuitive. For
example, consider the Cnot gate in the Hadamard basis {|+⟩, |−⟩}:
Cnot : |++⟩ → |++⟩

|+−⟩ → |−−⟩
|−+⟩ → |−+⟩
|−−⟩ → |+−⟩.

In the Hadamard basis, it is the state of the second qubit that remains unchanged, and the state
of the first qubit that is flipped depending on the state of the second bit. Thus, in this basis the
sense of which bit is the control bit and which the target bit has been reversed. But we have
not changed the transformation at all, only the way we are thinking about it. Furthermore, in
most bases, we do not see a control bit or a target bit at all. For example, as we have seen, the
controlled-not transforms 1√

2
(|0⟩ + |1⟩)|0⟩ to 1√

2
(|00⟩ + |11⟩). In this case the controlled-not

entangles the qubits so that it is not possible to talk about their states separately.
A related fact, which we will use in constructing algorithms and in quantum error correction,

is that the following two circuits are equivalent:

H

H

H

H
=

Caution 3: Reading circuit diagrams The graphical representation of quantum circuits can be
misleading if one is not careful to interpret it properly. In particular, one cannot determine the
effect the transformation has on the input qubits, even if they are all in standard basis states, by
simply looking at the line in the diagram corresponding to that qubit. Let us look at the circuit

H H

acting on the input state |0⟩|0⟩. Since the Hadamard transformation is its own inverse, it might at
first appear that the first qubit’s state would remain unchanged by the transformation. But it does
not. Recall from caution 2 that the controlled-not gate does not leave the first qubit unaffected in
general. In fact, this circuit takes the input state |00⟩ to 1/2(|00⟩ + |10⟩ + |01⟩ − |11⟩), an effect
that cannot be seen immediately from the circuit and so must be explicitly calculated.

5.3 Applications of Simple Gates

For many years, EPR pairs, and entanglement more generally, were viewed as quantum mechan-
ical oddities of merely theoretical interest. Quantum information processing changes that per-
ception by providing practical applications of entanglement. Two communications applications,
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The proof

LHS =
1

2

[
H H
H −H

] CNOT︷ ︸︸ ︷[
I 0
0 X

] [
H H
H −H

]
=

1

2

[
H HX
H −HX

] [
H H
H −H

]
=

1

2

[
I + HXH I − HXH
I − HXH I + HXH

]
=

1

2

[
I + Z I − Z
I − Z I + Z

]

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


= I ⊗ |0〉〈0| + X ⊗ |1〉〈1| = RHS

noting that

H ⊗ H = (I ⊗ H)(H ⊗ I ) =
1√
2

[
H 0
0 H

] [
I I
I −I

]
=

1√
2

[
H H
H −H

]
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Exercise

Discuss

5.2 Some Simple Quantum Gates 79

In other words, this swap circuit takes

|00⟩ "→ |00⟩
|01⟩ "→ |10⟩
|10⟩ "→ |01⟩
|11⟩ "→ |11⟩,

and |ψ⟩|φ⟩ "→ |φ⟩|ψ⟩ for all single-qubit states |ψ⟩ and |φ⟩.
Three cautions are in order. The first concerns the use of a basis to specify the transformation.

The second concerns the basis dependence of the notion of control. The third suggests care in
interpreting the graphical notation for quantum circuits.

Caution 1: Phases in Specifications of Transformations Section 3.1.3 discussed the important
distinction between the quantum state space (projective space) and the associated complex vector
space. We need to keep this distinction in mind when interpreting the standard ways quantum state
transformations are specified. A unitary transformation on the complex vector space is completely
determined by its action on a basis. The unitary transformation is not completely determined by
specifying what states the states corresponding to basis states are sent to, a subtle distinction. For
example, the controlled phase shift takes the four quantum states represented by |00⟩, |01⟩, |10⟩,
and |11⟩ to themselves; |10⟩ and eiθ |10⟩ represent exactly the same quantum state, and so do |11⟩
and eiθ |11⟩. As we saw above, however, this transformation is not the identity transformation
since it takes 1√

2
(|00⟩ + |11⟩) to 1√

2
(|00⟩ + eiθ |10⟩). To avoid mistakes, remember that notation

such as

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

is used to specify a unitary transformation on the complex vector space in terms of vectors in
that vectors space, not in terms of the states corresponding to these vectors. Specifying that the
vector |0⟩ goes to the vector −|1⟩ is different from specifying that |0⟩ goes to |1⟩ because the two
vectors −|1⟩ and |1⟩ are different vectors even if they correspond to the same state. The quantum
transformation on the state space is easily derived from the unitary transformation on the associated
complex vector space.

Caution 2: Basis Dependence of the Notion of Control The notion of the control bit and the target
bit is a carryover from the classical gate and should not be taken too literally. In the standard basis,
the Cnot operator behaves exactly as the classical gate does on classical bits. However, one should
not conclude that the control bit is never changed. When the input qubits are not one of the
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Controlled Q-gates

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to

78 5 Quantum State Transformations

A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

CQ |0〉|ϕ〉 = |0〉|ϕ〉
CQ |1〉|ϕ〉 = |1〉Q |ϕ〉

CQ = |0〉〈0|⊗ I + |1〉〈1|⊗ Q

corresponding to the following matrix in the standard basis:

CQ =

[
1 0
0 Q

]



Quantum gates and the circuit model Universal gates The computational model The Deutsch-Jozsa Algorithm

Controlled phase shift gate

e iθ = |00〉〈00|+ |01〉〈01|+ e iθ|10〉〈10|+ e iθ|11〉〈11|

e iθ =


1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Transforming a global into a local phase

1√
2
(|00〉+ |11〉 −→ 1√

2
(|00〉+ e iθ|11〉

Actually, a unitary transformation is completely determined by its action
on a basis, but not by specifying what states the states corresponding to
basis states are sent to.
Example: e iθ takes the four quantum states to themselves (because e.g.
|10〉 and e iθ|10〉 represent the same state), but a global phase can be
transformed into a local one, as above
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CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled CNOT . If the first two bits are
in the state |1〉 applies X the third bit, else it does nothing:

|q1q2q3〉 7→ |q1q2, q3 ⊕ (q1 ∧ q2)〉

In matrix form, 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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Universal set of gates?

Is there a universal set of quantum gates?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.
However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Definitions

• The error in approximating U by V is

Er(U,V ) = max|φ〉 ‖(U − V )|φ〉‖

• An operator U can be approximated to arbitrary accuracy if for any
positive ε there exists another unitary transformation V st
Er(U,V ) ≤ ε.

• A set of gates is universal if for any integer n ≥ 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.
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Universal set of gates?

Some examples

• The set {H,T } is universal for 1-gates.

• The set {H,T ,CNOT } is a universal set of gates.

How efficient is an approximation?
To approximate an unitary transformation encoding some specific
computation, one would expect to use a number of gates from the
universal set which is polynomial in the number of qubits and the inverse
of the quality factor ε.

Main result: theorem of Solovay-Kitaev
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A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in Rn which express indeterminacy about the exact physical

configuration, e.g.
[
p0 · · · pn

]T
st
∑

i p1 = 1
Operator: double stochastic matrix (must come (go) from (to)
somewhere), where Mi,j specifies the probability of evolution from
configuration j to i
Evolution: computed through matrix multiplication with a vector |u〉 of
current probabilities

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: the system is always in some configuration — if found in
i , the new state will be a vector |t〉 st tj = δj,i
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A probabilistic machine
Composition:

p ⊗ q =

[
p1

1 − p1

]
⊗
[

q1
1 − q1

]
=


p1q1

p1(1 − q1)
(1 − p1)q1

(1 − p1)(1 − q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0

0.5


• Operators are also composed by ⊗ (Kronecker product):

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN
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A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in Cn

Operator: unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.
Evolution: computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: configuration i is observed with probability ‖αi‖2 if found
in i , the new state will be a vector |t〉 st tj = δj,i
Composition: also by a tensor on the complex vector space; may exist
entangled states
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A quantum machine

Quantum algorithms

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)

What’s next?

1. Study a number of algorithmic techniques

2. and their application to the development of quantum algorithms
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The phase ‘push up’ technique

Recall the role swap between control and target qubits when a CNOT is
applied in the Hadamard basis, e.g.(

|0〉+ |1〉√
2

) (
|0〉− |1〉√

2

)
7→ (

|0〉− |1〉√
2

) (
|0〉− |1〉√

2

)
This happens because |0〉−|1〉√

2
is an eigenvector of X (with λ = −1) and

of I (with λ = 1). Thus,

CNOT |1〉
(
|0〉− |1〉√

2

)
= |1〉

(
NOT

(
|0〉− |1〉√

2

))
= |1〉

(
(−1)

(
|0〉− |1〉√

2

))
= −|1〉

(
|0〉− |1〉√

2

)
while CNOT |0〉

(
|0〉−|1〉√

2

)
= |0〉

(
|0〉−|1〉√

2

)
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The phase ‘push up’ technique

The phase has been pushed up to the control qubit:

CNOT |i〉
(
|0〉− |1〉√

2

)
= (−1)i |i〉

(
|0〉− |1〉√

2

)
for i ∈ {0, 1}, yielding, when the control qubit is in a superposition of |0〉
and |1〉,

CNOT (a0|0〉+ a1|1〉)
(
|0〉− |1〉√

2

)
= (a0|0〉− a1|1〉)

(
|0〉− |1〉√

2

)
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The phase ‘push up’ technique

Now, replace CNOT by an oracle (reversible implementation) Uf for an
arbitrary Boolean function f : 2 −→ 2:

Uf |xy〉 = |x〉|y ⊕ f (x)〉
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The phase ‘push up’ technique

Fix the target as 1√
2
(|0〉− |1〉) and an arbitrary basis state as the control,

Uf |x〉
(
|0〉− |1〉√

2

)
=

(
Uf |x〉|0〉− Uf |x〉|1〉√

2

)
=

(
|x〉|0⊕ f (x)〉− |x〉|1⊕ f (x)〉√

2

)
= |x〉

(
|0⊕ f (x)〉− |1⊕ f (x)〉√

2

)
︸ ︷︷ ︸

ξ

Clearly,
ξ = (−1)f (x)

1√
2
(|0〉− |1〉)

Thus, when the control qubit is in a superposition of |0〉 and |1〉,

Uf (a0|0〉+a1|1〉)
(
|0〉− |1〉√

2

)
=
(
(−1)f (0)a0|0〉+ (−1)f (1)a1|1〉

) ( |0〉− |1〉√
2

)
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The phase ‘push up’ technique

Uf can be regarded as 1-gate Ûf (x) acting on the second qubit and
controlled by the state |x〉 of first one, mapping

|y〉 7→ |y ⊕ f (x)〉

(from [Kaey et al, 2007])

Note that the state |0〉−|1〉√
2

of the target is an eigenvector of Ûf (x)

The phase ‘push up’ technique
Input an eigenvector to the target qubit of operator Ûf (x), and
associate the eigenvalue with the state of the control qubit
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My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle
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A quantum computer can be in a superposition of two basic states at the same
time. We shall use this superposition of states to evaluate both inputs at one time.

In classical computing, evaluating a given function f corresponds to performing
the following operation:

x
f

f (x)
(6.3)

As we discussed in Chapter 5, such a function can be thought of as a matrix
acting on the input. For instance, the function

0•
!

!!"
""

""
""

" •0

1•
#

""$$$$$$$$
•1

(6.4)

is equivalent to the matrix

[ 0 1
0 0 1
1 1 0

]

. (6.5)

Multiplying state |0⟩ on the right of this matrix would result in state |1⟩, and multi-
plying state |1⟩ on the right of this matrix would result in state |0⟩. The column name
is to be thought of as the input and the row name as the output.

Exercise 6.1.1 Describe the matrices for the other three functions from {0, 1} to
{0, 1}. !

However, this will not be enough for a quantum system. Such a system demands
a little something extra: every gate must be unitary (and thus reversible). Given the
output, we must be able to find the input. If f is the name of the function, then the
following black-box Uf will be the quantum gate that we shall employ to evaluate
input:

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ (6.6)

The top input, |x⟩, will be the qubit value that one wishes to evaluate and the
bottom input, |y⟩, controls the output. The top output will be the same as the input
qubit |x⟩ and the bottom output will be the qubit |y ⊕ f (x)⟩, where ⊕ is XOR, the
exclusive-or operation (binary addition modulo 2.) We are going to write from left
to right the top qubit first and then the bottom. So we say that this function takes the
state |x, y⟩ to the state |x, y ⊕ f (x)⟩. If y = 0, this simplifies |x, 0⟩ to |x, 0 ⊕ f (x)⟩ =
|x, f (x)⟩. This gate can be seen to be reversible as we may demonstrate by simply

where ⊕ stands for exclusive disjunction.

• The oracle takes input |x , y〉 to |x , y ⊕ f (x)〉

• for y = 0 the output is |x , f (x)〉
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My first quantum program

Is f : 2 −→ 2 constant, with a unique evaluation?

Oracle

• The oracle is a unitary, i.e. reversible gate
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looking at the following circuit:

|x⟩

Uf

|x⟩

Uf

|x⟩

|y⟩ |y ⊕ f (x)⟩ |y⟩

(6.7)

State |x, y⟩ goes to |x, y ⊕ f (x)⟩, which further goes to

|x, (y ⊕ f (x)) ⊕ f (x)⟩ = |x, y ⊕ ( f (x) ⊕ f (x))⟩ = |x, y ⊕ 0⟩ = |x, y⟩, (6.8)

where the first equality is due to the associativity of ⊕ and the second equality holds
because ⊕ is idempotent. From this we see that Uf is its own inverse.

In quantum systems, evaluating f is equivalent to multiplying a state by the uni-
tary matrix Uf . For function (6.4), the corresponding unitary matrix, Uf , is

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦
. (6.9)

Remember that the top column name corresponds to the input |x, y⟩ and the
left-hand row name corresponds to the outputs |x′, y′⟩. A 1 in the xy column and the
x′y′ row means that for input |x, y⟩, the output will be |x′, y′⟩.

Exercise 6.1.2 What is the adjoint of the matrix given in Equation (6.9)? Show that
this matrix is its own inverse. !

Exercise 6.1.3 Give the unitary matrices that correspond to the other three func-
tions from {0, 1} to {0, 1}. Show that each of the matrices is its own adjoint and hence
all are reversible and unitary. !

Let us remind ourselves of the task at hand. We are given such a matrix that ex-
presses a function but we cannot “look inside” the matrix to “see” how it is defined.
We are asked to determine if the function is balanced or constant.

Let us take a first stab at a quantum algorithm to solve this problem. Rather than
evaluating f twice, we shall try our trick of superposition of states. Instead of having
the top input to be either in state |0⟩ or in state |1⟩, we shall put the top input in state

|0⟩ + |1⟩
√

2
, (6.10)

which is “half-way” |0⟩ and “half-way” |1⟩. The Hadamard matrix can place a qubit
in such a state.

H|0⟩ =

⎡

⎢⎣
1√
2

1√
2

1√
2

− 1√
2

⎤

⎥⎦

⎡

⎢⎣
1

0

⎤

⎥⎦ =

⎡

⎢⎣
1√
2

1√
2

⎤

⎥⎦ = |0⟩ + |1⟩√
2

. (6.11)

|x , (y ⊕ f (x))⊕ f (x)〉 = |x , y ⊕ (f (x)⊕ f (x))〉 = |x , y ⊕ 0〉 = |x , y〉
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My first quantum program

Idea: Avoid double evaluation by superposition
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After multiplying with Uf , we have

|ϕ2⟩ = |0, f (0)⟩ + |1, f (1)⟩√
2

. (6.18)

For function (6.4), the state |ϕ2⟩ would be

|ϕ2⟩ =

⎡

⎢⎢⎢⎣

00 01 10 11
00 0 1 0 0
01 1 0 0 0
10 0 0 1 0
11 0 0 0 1

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

00 1√
2

01 0
10 1√

2
11 0

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

00 0
01 1√

2

10 1√
2

11 0

⎤

⎥⎥⎥⎥⎦
= |0, 1⟩ + |1, 0⟩√

2
. (6.19)

Exercise 6.1.4 Using the matrices calculated in Exercise 6.1.3, determine the state
|ϕ2⟩ for the other three functions. !

If we measure the top qubit, there will be a 50–50 chance of finding it in state |0⟩
and a 50–50 chance of finding it in state |1⟩. Similarly, there is no real information to
be gotten by measuring the bottom qubit. So the obvious algorithm does not work.
We need a better trick.

Let us take another stab at solving our problem. Rather than leaving the bottom
qubit in state |0⟩, let us put it in the superposition state:

|0⟩ − |1⟩
√

2
=

⎡

⎢⎣
1√
2

− 1√
2

⎤

⎥⎦ . (6.20)

Notice the minus sign. Even though there is a negation, this state is also “half-way”
in state |0⟩ and “half-way” in state |1⟩. This change of phase will help us get our
desired results. We can get to this superposition of states by multiplying state |1⟩
with the Hadamard matrix. We shall leave the top qubit as an ambiguous |x⟩.

|x⟩

Uf
|1⟩

H !"!!!
⇑

|ϕ0⟩
⇑

|ϕ1⟩
⇑

|ϕ2⟩

(6.21)

In terms of matrices, this becomes

Uf (I ⊗ H)|x, 1⟩. (6.22)

The circuit computes:

output = |x〉 |0⊕ f (x)〉− |1⊕ f (x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f (x) = 0

|x〉 |1〉−|2〉√
2

⇐ f (x) = 1

= (−1)f (x) |x〉 |0〉− |1〉√
2
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My first quantum program

Idea: Avoid double evaluation by superposition
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Let us look carefully at how the states of the qubits change.

|ϕ0⟩ = |x, 1⟩. (6.23)

After the Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
= |x, 0⟩ − |x, 1⟩√

2
. (6.24)

Applying Uf , we get

|ϕ2⟩ = |x⟩
[ |0 ⊕ f (x)⟩ − |1 ⊕ f (x)⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.25)

where f (x) means the opposite of f (x). Therefore, we have

|ϕ2⟩ =

⎧
⎪⎨

⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0,

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1.

(6.26)

Remembering that a − b = (−1)(b − a), we might write this as

|ϕ2⟩ = (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.27)

What would happen if we evaluate either the top or the bottom state? Again,
this does not really help us. We do not gain any information if we measure the top
qubit or the bottom qubit. The top qubit will be in state |x⟩ and the bottom qubit
will be either in state |0⟩ or in state |1⟩. We need something more.

Now let us combine both these attempts to actually give Deutsch’s algorithm.
Deutsch’s algorithm works by putting both the top and the bottom qubits into

a superposition. We will also put the results of the top qubit through a Hadamard
matrix.

|0⟩
H

Uf

H !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.28)

In terms of matrices this becomes

(H ⊗ I)Uf (H ⊗ H)|0, 1⟩ (6.29)

(H ⊗ I )Uf (H ⊗ H)(|01〉)

Input in superposition

|σ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|00〉− |01〉+ |10〉− |11〉

2



Quantum gates and the circuit model Universal gates The computational model The Deutsch-Jozsa Algorithm

My first quantum program

|σ2〉 =

(
(−1)f (0)|0〉+ (−1)f (1)|1〉√

2

) (
|0〉+ |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant

|σ3〉 = H |σ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0〉, then f is constant.
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The Deutsch-Jozsa Algorithm

Generalizing Deutsch’s algorithm to functions whose domain is an initial
segment n of N, encoded into a binary string (i.e. the set of natural
numbers from 0 to 2n − 1).

Assuming f : 2n −→ 2 is either balanced or constant, determine
which is the case with a unique evaluation

Oracle
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Exercise 6.2.1 How many functions are there from {0, 1}n to {0, 1}? How many of
them are balanced? How many of them are constant? !

The Deutsch–Jozsa algorithm solves the following problem: Suppose you are
given a function from {0, 1}n to {0, 1} which you can evaluate but cannot “see” the
way it is defined. Suppose further that you are assured that the function is either
balanced or constant. Determine if the function is balanced or constant. Notice that
when n = 1, this is exactly the problem that the Deutsch algorithm solved.

Classically, this algorithm can be solved by evaluating the function on different
inputs. The best case scenario is when the first two different inputs have different
outputs, which assures us that the function is balanced. In contrast, to be sure that
the function is constant, one must evaluate the function on more than half the pos-
sible inputs. So the worst case scenario requires 2n

2 + 1 = 2n−1 + 1 function evalua-
tions. Can we do better?

In the last section, we solved the problem by entering into a superposition of two
possible input states. In this section, we solve the problem by entering a superposi-
tion of all 2n possible input states.

The function f will be given as a unitary matrix that we shall depict as

|x⟩
/n

Uf

/n
|x⟩

|y⟩ | f (x) ⊕ y⟩ (6.44)

with n qubits (denoted as /n ) as the top input and output. For the rest of
this chapter, a binary string is denoted by a boldface letter. So we write the top input
as |x⟩ = |x0x1 . . . xn−1⟩. The bottom entering control qubit is |y⟩. The top output is
|x⟩ which will not be changed by Uf . The bottom output of Uf is the single qubit
|y ⊕ f (x)⟩. Remember that although x is n bits, f (x) is one bit and hence we can use
the binary operation ⊕. It is not hard to see that Uf is its own inverse.

Example 6.2.1 Consider the following balanced function from {0, 1}2 to {0, 1}:

00•!

!!"
""

""
""

""
""

""
""

01•
#

""$$
$$

$$
$$

•0

10•
%

##&&&&&&&&
•1

11•
'

$$(((((((((((((((

(6.45)
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Using H⊗n to put n qubits superposed

Computing H⊗n

H =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]

H⊗2 =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
⊗ 1√

2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
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Using H⊗n to put n qubits superposed

Computing H⊗n

H⊗2 =
1√
2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]
⊗ 1√

2

[
(−1)0∧0 (−1)0∧1

(−1)1∧0 (−1)1∧1

]

=
1

2


(−1)〈00,00〉 (−1)〈00,01〉 (−1)〈01,00〉 (−1)〈01,01〉

(−1)〈00,10〉 (−1)〈00,11〉 (−1)〈01,10〉 (−1)〈01,11〉

(−1)〈10,00〉 (−1)〈10,01〉 (−1)〈11,00〉 (−1)〈11,01〉

(−1)〈10,10〉 (−1)〈10,11〉 (−1)〈11,10〉 (−1)〈11,11〉


where 〈x , y〉 = (x0 ∧ y0)⊕ (x1 ∧ y1)⊕ · · · ⊕ (xn ∧ yn)
Note that

(−1)a∧b ⊗ (−1)a
′∧b ′

= (−1)a∧a ′⊕b∧b ′
= (−1)〈aa

′,bb ′〉
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Using H⊗n to put n qubits superposed
Computing H⊗n

In general, the value of H⊗n at coordinates ßi , ßj (row and column
numbers as binary strings) is given by

H⊗nßi,ßj =
1√
2n

(−1)〈ßi,ßj〉

Applying H⊗n to an arbitrary basic state |ßi〉 (which is a column vector
with 1 in line ßi and 0 everywhere else), extracts the ßi-column of H⊗n:

H⊗n|ßi〉 =
1√
2n

∑
ßx∈{0,1}n

(−1)〈ßx,ßi〉|ßx〉

e.g.

H⊗2|ß0〉 =
1

2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1
0
0
0

 =
1

2


1
1
1
1

 =
1

2

∑
ßx∈{0,1}n

|ßx〉
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First move: Uf (I ⊗ H)|ßx , 1〉

book-yanofsky CUUS235-Yanofsky ISBN 9780521879965 June 6, 2008 16:17 Char Count= 0

6.2 The Deutsch–Jozsa Algorithm 185

the bottom control qubit in a superposition. Let us see what would happen if we did
the same thing here.

|x⟩
/n

Uf

/n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩ (6.65)

In terms of matrices this amounts to

Uf (I ⊗ H)|x, 1⟩. (6.66)

For an arbitrary x = x0x1x2 . . . xn−1 as an input in the top n qubits, we will have
the following states:

|ϕ0⟩ = |x, 1⟩. (6.67)

After the bottom Hadamard matrix, we have

|ϕ1⟩ = |x⟩
[ |0⟩ − |1⟩√

2

]
=

[ |x, 0⟩ − |x, 1⟩√
2

]
. (6.68)

Applying Uf we get

|ϕ2⟩ = |x⟩
[ | f (x) ⊕ 0⟩ − | f (x) ⊕ 1⟩√

2

]
= |x⟩

[
| f (x)⟩ − | f (x)⟩√

2

]

, (6.69)

where f (x) means the opposite of f (x).

|ϕ2⟩ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|x⟩
[

|0⟩−|1⟩√
2

]
, if f (x) = 0

|x⟩
[

|1⟩−|0⟩√
2

]
, if f (x) = 1

= (−1) f (x)|x⟩
[ |0⟩ − |1⟩√

2

]
. (6.70)

This is almost exactly like Equation (6.27) in the last section. Unfortunately, it is just
as unhelpful.

Let us take another stab at the problem and present the Deutsch–Jozsa algo-
rithm. This time, we shall put |x⟩ = |x0x1 · · · xn−1⟩ into a superposition in which all

|ϕ1〉 = |ßx〉 |0〉− |1〉√
2

=
|ßx , 0〉− |ßx1〉√

2

|ϕ2〉 = |ßx〉 |f (ßx)⊕ 0〉− |f (ßx)⊕ 1〉√
2

= (−1)f (ßx)|ßx〉 |0〉− |1〉√
2
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Second move: (H⊗n ⊗ I )Uf (H
⊗n ⊗ H)|ß0, 1〉

Put input |ßx〉 into a superposition in which all 2n possible strings have
equal probability: H⊗n|ß0〉.
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2n possible strings have equal probability. We saw that we can get such a superposi-
tion by multiplying H⊗n by |0⟩ = |000 · · · 0⟩. Thus, we have

|0⟩
/n H⊗n /n

Uf

/n H⊗n /n !"!!!
|1⟩

H

⇑
|ϕ0⟩

⇑
|ϕ1⟩

⇑
|ϕ2⟩

⇑
|ϕ3⟩ (6.71)

In terms of matrices this amounts to

(H⊗n ⊗ I)Uf (H⊗n ⊗ H)|0, 1⟩. (6.72)

Each state can be written as

|ϕ0⟩ = |0, 1⟩, (6.73)

|ϕ1⟩ =

⎡

⎣

∑
x∈{0,1}n

|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.74)

(as in Equation (6.63)). After applying the Uf unitary matrix, we have

|ϕ2⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)|x⟩
√

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
. (6.75)

Finally, we apply H⊗n to the top qubits that are already in a superposition of differ-
ent x states to get a superposition of a superposition

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)
∑

z∈{0,1}n
(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩

√
2

]
(6.76)

from Equation (6.64). We can combine parts and “add” exponents to get

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.77)

=

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)⊕⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
.

|ϕ1〉 =

∑
ßx∈{0,1}n |ßx〉
√

2n

|0〉− |1〉√
2

|ϕ2〉 =

∑
ßx∈{0,1}n (−1)f (ßx)|ßx〉

√
2n

|0〉− |1〉√
2
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Second move: (H⊗n ⊗ I )Uf (H
⊗n ⊗ H)|ß0, 1〉
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(as in Equation (6.63)). After applying the Uf unitary matrix, we have
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√

2n
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Finally, we apply H⊗n to the top qubits that are already in a superposition of differ-
ent x states to get a superposition of a superposition

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

(−1) f (x)
∑

z∈{0,1}n
(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩

√
2
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(6.76)

from Equation (6.64). We can combine parts and “add” exponents to get

|ϕ3⟩ =

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)(−1)⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
(6.77)

=

⎡

⎣

∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)⊕⟨z,x⟩|z⟩

2n

⎤

⎦
[ |0⟩ − |1⟩√

2

]
.

|ϕ3〉 =

∑
ßx∈{0,1}n (−1)f (ßx)

∑
ßz∈{0,1}n (−1)〈ßz,ßx〉|ßz〉
√

2n

|0〉− |1〉√
2

=

∑
ßx,ßz∈{0,1}n (−1)f (ßx)(−1)〈ßz,ßx〉|ßz〉

√
2n

|0〉− |1〉√
2

=

∑
ßx,ßz∈{0,1}n (−1)f (ßx)⊕〈ßz,ßx〉|ßz〉

√
2n

|0〉− |1〉√
2
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Finally: observe!

When do the top qubits of |ϕ3〉 collapse to |ß0〉?

Making |ßz〉 = |ß0〉 (and thus 〈ßz , ßx〉 = 0 for all ßx) leads to

|ϕ3〉 =

∑
ßx∈{0,1}n (−1)f (ßx)|ß0〉

√
2n

|0〉− |1〉√
2

i.e.

the probability of collapsing to |ß0〉 depends only on f (ßx)
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Finally: observe!

Analyse the top qubits

f is constant at 1  
∑

ßx∈{0,1}n (−1)|ß0〉
√
2n

= −(2n)|ß0〉
2n = −|ß0〉

f is constant at 0  
∑

ßx∈{0,1}n 1|ß0〉
√
2n

= (2n)|ß0〉
2n = |ß0〉

f is balanced  
∑

ßx∈{0,1}n (−1)f (ßx)|ß0〉
√
2n

= 0|ß0〉
2n = 0|ß0〉

because half of the ßx will cancel the other half

The top qubits collapse to |ß0〉 only if f is constant

Exponential speed up: f was evaluated once rather than 2n − 1 times
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