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Quantum gates and the circuit model

The circuit model

Classical reversible circuits (which can simulate any non-reversible one
with modest overhead) generalise to quantum circuits where

e |ogical qubits are carried along wires,

e quantum gates, corresponding to unitary transformations, act on
them, and

e measurements result in a state |/), with probability given by the
norm squared of its amplitude, ||a;||?, together with a classical label

"

i" indicating which outcome was obtained.



Quantum gates and the circuit model Universal gates The computational model The Deutsch-Jozsa Algorithm

A parenthesis: Unitary transformations
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Unitary transformations

Gates encode transformations that

e are linear:
U(cx1|v1>+-~-+ock|vk>) = O(1U|V1>+"‘+062U|Vk>

e and map orthogonal subspaces to orthogonal subspaces (cf, unit
length vectors map to unit length vectors)

These properties hold iff U preserves inner products:

<v|UJf Ulw) = (vlw)

which entails
utu =1 U is unitary
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Unitary transformations

e Not only unitary operators map orthonormal bases to orthonormal
bases, since they preserve the inner product, but also any linear
transformation with such behaviour is unitary.

e If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the ith column
is the image of U|i)). equivalently, rows are orthonormal (why?7)

e Both Uy U; and U; ® U, are unitary, if U; are; but linear
combinations of unitary operators, however, are not in general
unitary.

Unitary transformations are reversible
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Unitary transformations

The no-cloning theorem: well-known consequence of linearity

Let U(|a)|0)) = |a)|a) and consider state |c) = %(Ia) + |b)) for |a) and
|b) orthogonal. Then

U(6)I0)) = —=(U(12)[0)) + U(IB)I0))

= —(|a)la) + |B)|b))

# —=(la)la) +[a)[b) + |b)|a) + [b)|b))

=U

This result, however, does not preclude the construction of a known
quantum state from a known quantum state.
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End of parenthesis
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Quantum gates

A gate is a transformation that acts on only a small number of qubits

Differently from the classical case, they do not necessarily correspond to
physical objects

Notation
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1-Gates

The action of a 1-gate U on a quantum state |¢) can be thought of as a
rotation of the Bloch vector for ) to the Bloch vector for Uld), eg.

Exemple: X
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A parenthesis: Representation in the Bloch sphere
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The Bloch sphere

Deterministic, probabilistic and quantum bits

P

—

Po

(from [Kaeys et al, 2007])
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The Bloch sphere

The state of a quantum bit is described by a complex unit vector in a
2-dim Hilbert space, which, up to a physically irrelevant global phase
factor, can be written as

0 : 0
hp) = cos 5 |0) + e'? sin 5 1)
—— T

X

where 0 <0 < 7, 0 < @ < 27, and depicted as a point on the surface of
a 3-dim Bloch sphere, defined by 0 and ¢.
The Bloch vector i) has

e Spherical coordinates:
x =psinBcos@ y=psinBsinge = z=pcosHd

e Measurement probabilities:

0 1 1
2 _ — = —
ledl|* = (cos 2) + 5 cos 6
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Quantum gates and the circuit model

The Bloch sphere

e The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

e Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle © measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

e Rotating a vector wrt the z-axis results into a phase change (),
and does not affect which state the arrow will collapse to, when
measured.
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The Bloch sphere
Representing [{) = «/|0) + [1)

Express [{) in polar form
[b) = p1€'®1(0) + poe’®2[1)
and eliminate one of the four real parameters multiplying by e=/®1
) = p110) + P22~ *V[1) = p1]0) + p2e'?1)

making ¢ = @2 — @1.
Switch back the coefficient of |1) to Cartesian coordinates and compute
the normalization constraint

o1l + lla + ibl|* = [lpal|* +(a — ib)(a + ib) = [lpu]* +a® + b* = 1

which is the equation of a unit sphere in Real 3-dim space with Cartesian
coordinates: (a, b, p1).
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The Bloch sphere

Back to polar,

Xx =psin 0 cos @
y =psinBsin @
z =pcos B

So, recalling that p =1,

W) = 2|0) + (a + ib)[1)
= cos 0|0) + sin O(cos @ — isin @)[1)
= cos 0/0) + e'® sin 0]1)

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 <0’ < 7) as
opposite points in the lower one differ only by a phase factor of —1:

Let ') be the opposite point on the sphere with polar coordinates
(1,7’[— e/)(P +7T)

W) = cos (t— 0")[0) + &/ ®*™ sin (r— 0')[1)
= —cos0'|0) + e ?e™sin0'|1)
= —cos0’|0) + e’ sin0’|1)
=—b)

0 ; 0
"L')> = COS §|0> + e'? sin §‘1>

where 0 <0 <7 0< <27
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End of parenthesis
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1-Gates

The Hadamard gate

HI0) = I+) =

HIL = |-) =

Note that HH =1

The Deutsch-Jozsa Algorithm
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1-Gates
The phase shift gate

po_ 110
¢ — \/§ 0 eicb
Ry 10) = 10)

Ry 1) = 1)

The T (or 3) gate

1 0
T =Ry = [0 e"?}

which, up to global phase, is equivalent to

e's
0 €%

The Deutsch-Jozsa Algorithm
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1-Gates
Pauli gates
| =)0+ =] ‘1’]
X = [10l+10)(1 = | (1)]
z —oo-mai= 5 % - &

Y = (=10 + [0)(1)) = [? ‘O"]
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1-Gates

Rotation gates

Correspond to rotations about the three axes of the Bloch sphere, and
are computed as Pauli gates squared.

where e = x,y,zand E= X, Y, Z.

because, for any real number r and matrix R st R?> = /, which is the case
for X, Y, and Z,

e™ = cos(r)l +isin(r)R
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1-Gates

Rotation gates as matrices in the computational basis
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1-Gates

Compute R.(0)[) for \p) = cos (£)[0) + e sin (Z)[1)

e iz cos (%) 1 e i cos (%)
0 €| [e7sin(g)]  [eFeVsin(g

=% [e Oely s( )( )}
* (eos ()00 + e sin (3)1m)

~—

SN

As global phase is insignificant, the angle mapping y — vy +0 is a
rotation of © around the z-axis of the Bloch sphere.
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1-Gates

Theorem
Let U be a 1-gate, and v, w any two non-parallel axes of the Bloch
sphere. Then there exist real numbers o, 3y, st

U = e*R(B)Ru(Y)R(5)

which means that any 1-gate can be expressed as a sequence of two
rotations about an axis and one rotation about another non parallel axis,
multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.
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2-gates: CNOT

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT

00| @ I + |1)(1] ® X
10) (0l @ (10) (0 + [1)(1]) + [1)(1] @ (11){0 + [0)(1[)
100)(00] 4 [01) (01| + |11)(10] + [10) (11|

1000
o100
“looo0 1
0010

CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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2-gates: CNOT

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT (\2(0>+|1>)®|o>> = CNOT <\2(IOO>+I10>)>
1
= EHOOHHD)

Since it is its own inverse, it can take an entangled state to an
unentangled one.

Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U® V)|v) isentangled iff |v)is
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2-gates: CNOT

The notions of control/target bit in CNOT are arbitrary: they depend on
what basis is considered. The standard behaviour is obtained in the
computational basis. However, roles are interchanged in the Hadamard
basis in which the effect of CNOT is

l++) = +4) =) = =) [—H) = —4) [——) = +-)

Exercise

is — - 1
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The proof

CNOT
_ —
H H][l o][H H
H —H| |0 X||H —-H
[H HX][H H
|\H —HX| |H —H
[+ HXH |—HXH] _ 1[i+Z I-Z
|/ —HXH I+HXH|] — 2|I-Z I+Z

00
00
01
10
0)(0] + X ® [1)(1] = RHS

LHS =

O O = O

1
0
0
0
®

noting that

non = tonmen = L[H B[ 1)< L[ A
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Exercise

Discuss

D
D
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Controlled Q-gates

From I to @

Colo)l) = 10)|@)
Coll)le) = 11)Qlp)

Co = 10)(0lx 1+ 1)(1l® Q

corresponding to the following matrix in the standard basis:

1 0
CQ:{O o}
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Controlled phase shift gate

e = |00)(00| +[01) (01| + €"°[10)(10] + ®[11)(11]

10 0 O
go _ |01 0 0
00 &° 0
00 0 &°

Transforming a global into a local phase

1 1
V2 V2

Actually, a unitary transformation is completely determined by its action
on a basis, but not by specifying what states the states corresponding to
basis states are sent to.

Example: e'® takes the four quantum states to themselves (because e.g.
|10) and e’®|10) represent the same state), but a global phase can be
transformed into a local one, as above

(lo0) +[11) — (100) + e"[11)
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CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled CNOT. If the first two bits are
in the state [1) applies X the third bit, else it does nothing:

lg1g2q3) — 9162, 03 @ (g1 A\ g2))

In matrix form,

10000000
01000000
00100000
00010000
00001000
00000100
00000001

0 00000 1 0
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Universal set of gates?

Is there a universal set of quantum gates?

In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.
However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Definitions
e The error in approximating U by V is

Er(U,V) = max;gy [[(U—V)d)]

e An operator U can be approximated to arbitrary accuracy if for any
positive € there exists another unitary transformation V' st
Er(U,V) <e.

e A set of gates is universal if for any integer n > 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.
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Universal set of gates?

Some examples

e The set {H, T} is universal for 1-gates.
e The set {H, T, CNOT} is a universal set of gates.

How efficient is an approximation?

To approximate an unitary transformation encoding some specific
computation, one would expect to use a number of gates from the
universal set which is polynomial in the number of qubits and the inverse
of the quality factor €.

Main result: theorem of Solovay-Kitaev
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A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in R"” which express indeterminacy about the exact physical
configuration, e.g. [po-- - pn] i Y.p=1

Operator: double stochastic matrix (must come (go) from (to)
somewhere), where M; ; specifies the probability of evolution from
configuration j to i

Evolution: computed through matrix multiplication with a vector |u) of
current probabilities

e Mu) (next state)

e |u)TMT (previous state)

Measurement: the system is always in some configuration — if found in
i, the new state will be a vector [t) st t; = ; ;
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A probabilistic machine
Composition:

P11
p1 } { a1 } _ pi(l—q1)
—p1 1—q (1—p1)aq
(1—p1)(1—q1)

p®q = [1

e correlated states: cannot be expressed as p ® g, e.g.

0.5
0
0

0.5

e Operators are also composed by ® (Kronecker product):
MiaN- - My aN

MeN = : :
MpiN - MpoN
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A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in C"

Operator: unitary matrix (M'M = ). The norm squared of a unitary
matrix forms a double stochastic one.

Evolution: computed through matrix multiplication with a vector |u) of
current amplitudes (wave function)

e M|u) (next state)

e |u)TMT (previous state)

Measurement: configuration i is observed with probability ||o;||? if found
in i, the new state will be a vector |t) st t; =§;;

Composition: also by a tensor on the complex vector space; may exist
entangled states
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A quantum machine

Quantum algorithms

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)

What's next?

1. Study a number of algorithmic techniques

2. and their application to the development of quantum algorithms
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The phase ‘push up’ technique

Recall the role swap between control and target qubits when a CNOT is
applied in the Hadamard basis, e.g.

<I0> + |1>> <0> —|1>) o <|0> —|1>) (|0> - 1>>

V2 V2 V2 V2
This happens because |O>\;§|l> is an eigenvector of X (with A = —1) and
of I (with A =1). Thus,

CNOT |1) <|O>ﬁ|1>> = 1) <N0T<|0>ﬁ|1>>>

Il
=
/:
|
=
7 N

=
S~
S|
=
N~~~
"

while CNOT [0) (12711} = o) (1212}
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The phase ‘push up’ technique

The phase has been pushed up to the control qubit:

CNOT |i) (Io>\/§1>) i <o>\/§|1>>

for i € {0, 1}, yielding, when the control qubit is in a superposition of |0)
and [1),

CNOT (20/0) + a1/1)) <|0>\_@|1>> = (a0l0) — a1[1)) (|O>\21>)
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The phase ‘push up’ technique

Now, replace CNOT by an oracle (reversible implementation) Us for an
arbitrary Boolean function f:2 — 2:

Urlxy) = Ix)ly & f(x))
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The phase ‘push up’ technique

Fix the target as %(IO) —[1)) and an arbitrary basis state as the control,

Ur 1x) 0)—11)\ _ ([ Urlx)l0) — Ur Ix)I1)
| ( " ) EX>0@f\(§2)>X>1>€Bf(x)>>

V2
_ 0 f(x))—I1af(x))
- 'X>< 72 )

z
&

Clearly,

_ o Ly
& = (-1) ﬁ(\()) 1))

Thus, when the control qubit is in a superposition of |0) and |1),

Uf(ao\0>+al|1>) <0>\/§|1>) _ ((*1)f(0)30|0>+(*1)f(1)31|1>) <|0>\/§|1>>
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The phase ‘push up’ technique

Ur can be regarded as 1-gate U,c(x) acting on the second qubit and
controlled by the state |x) of first one, mapping

ly) — ly @ f(x)

|z) — — =) |z) —@—— |z)

ly) — — 1y ® f(2)) ) Uyl v ® £(2))

(from [Kaey et al, 2007])

Note that the state % of the target is an eigenvector of Of(x)

The phase ‘push up’ technique
Input an eigenvector to the target qubit of operator Of(x), and
associate the eigenvalue with the state of the control qubit
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My first quantum program

‘ Is f : 2 — 2 constant, with a unique evaluation?

Oracle

) )

» Us e fx)

where @ stands for exclusive disjunction.

e The oracle takes input |x,y) to |x,y & f(x))

e for y = 0 the output is |x, f(x))
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My first quantum program

‘ Is f : 2 — 2 constant, with a unique evaluation?

Oracle

e The oracle is a unitary, i.e. reversible gate

) ) )

Uf Uf

ly) ly® f(x))

X, (y @ F(x)) ®F(x)) = Ix,y ®(F(x)DF(x))) = Ix,y®0) = Ix,y)
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My first quantum program

Idea: Avoid double evaluation by superposition

|x)

1)

(]

The circuit computes:

0 f(x)) — 1@ f(x))

output = |x)

_ [REZE e =0
B &f 1

) (x) =
= (-1 2T
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My first quantum program

Idea: Avoid double evaluation by superposition

(] L] ]

7
L]

(H® 1) Ur (H® H)(I01))

Input in superposition

1 V2 V2 2
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My first quantum program

j02) = ((—1)“°)|0> + (—1)“”1>> <|0> + |1>>
7 7
(+1) |0>+2‘1> ‘0>\;§‘1> & f constant
B (il) IO)\;E\D ‘0>\}2‘1> < f not constant
los) = Hloa)
_ (+1)]0) |o>\[2|1> & f constant
(+1)]1) IO>\/§|1> & f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0), then f is constant.
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The Deutsch-Jozsa Algorithm

Generalizing Deutsch's algorithm to functions whose domain is an initial
segment n of N, encoded into a binary string (i.e. the set of natural
numbers from 0 to 2" —1).

Assuming f : 2" — 2 is either balanced or constant, determine
which is the case with a unique evaluation

Oracle
%) [x)
- m b
U
Iy) ! 1f(x)® )
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Using H®" to put n qubits superposed

Computing H®"

H - i[(_l)O/\O (_1)0/\1}
- (_1)1/\0 (_1)1/\1

H®? — 1 [(_nom (_1)0A1]® 1 [(_1)0/\0 (_1)0/\1}
= ( (

_1)1A0 (_l)lAl _1)1/\0 (_1)1/\1

S
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. n .
Using H" to put n qubits superposed

Computing H®"

H®2 B 1 (_1)0/\0 (_1)0/\1 1 (_1 00 1 0Nl
- 72 (_1)1A0 (_1)1A1] Y 72 [(_1)1/\0 ( 1)1/\1
(_1)(00,00) (_1)<00,01> (_1)(01,00) (_1)<01,01>

1 (_1)(00,10) (_1)<OO,11> (_1)(01,10) (_1)(01,11)

- 5 (_1)(10,00) (_1)<10,01) (_1)(11,00) (_1)<11,01)
(71)(10,10) (71)(10,11) (71)(11,10) (71)(11,11)

where <X)y> = (XO /\)/0) S (Xl /\)/1) S D (Xn/\)/n)
Note that

(71)3/“\bt>—<a(71)a//“\b/ _ (71)a/\a/%b/\b/ _ (71)<aa/,bb/>
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Using H®" to put n qubits superposed
Computing H®"

In general, the value of H®" at coordinates 8/, j (row and column
numbers as binary strings) is given by

en L gymis)

Bi, B T \/7

Applying H®™ to an arbitrary basic state [Bi) (which is a column vector
with 1 in line 7 and 0 everywhere else), extracts the 8i-column of Her,

1 ,
H®"B)) = —1) BB 35
IB7) o BXE{ZO)W( ) Bx)

e.g.
1 1 1 1][1 1
111 -1 1 -1/ o0 11 1
®2 = [ I
HE2B0) = S0 1 L il ol =311l = 3 Z I8x)
1 -1 -1 1]]0 1 et
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First move: Ur(/ @ H)[Bx, 1)

[x)
~ :
Uy
1) [
LH]
i i i
[%o) 1) |¢2)

10) —11)  IBx,0) —Bx1)
v2 o V2
[f(Bx) @ 0) — |f(Bx) ® 1)
V2

lp1) = [Bx)

0) — 1)
V2

[p2) = [Bx) = (1) ™px)
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C ®n Qn
Second move: (H*" ® I Uf(H®" @ H)|80,1

Put input [Bx) into a superposition in which all 2" possible strings have
equal probability: H®"|B0).

10)

n W\ n /n - n
Uy
1) 1
LH]
f i i f
o) 1) |¢2) l3)

_ Zﬁxe{o,l}" Bx) [0) — 1)
lp1) = J2r A

02) = Y ieetonyr (DFEIIBX) j0y — 1)
- 5 —
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Second move: (H®" ® I)Ur(H®" @ H)[50,1)

n el [y n
Uy
1) R
LH |
T T i T
) le1) l¢2) l3)

lp3) = Y greto,yr (D Y e, (1) HPIBZ) (o) — (1)
’ V2 V2

Zﬁx,ﬁze{O,l}” (_1)f(BX)(_1)<BZ’BX>|BZ> 0) — 1)
v2n /2

st,ﬁze{o,n" (—1)f B (B2,8x) |3 7) 0) — |1)
V2r V2
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Finally: observel!

When do the top qubits of |¢@3) collapse to [30)?

Making [8z) = [80) (and thus (Bz, x) = 0 for all ix) leads to

03) = 2 xef0,1)" (1) |50 10) —[1)
) =
Vo 7

the probability of collapsing to |80) depends only on f(8x) ‘
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Finally: observel!

Analyse the top qubits

| f is constant at 1| ~ Zocons CUE0) - —ZJI50 — o)

\/2n | >
Zﬁx ,13n 1|80 2") |30
€{0,1} — ( )L > — ‘BO>

V2n

‘ f is constant at 0 ‘ ~

o (= f(Bx) B
fis balanced | ~» Z&cn \;271) Lo °‘2ﬁn°> = 0[80)

because half of the 8x will cancel the other half

‘ The top qubits collapse to [80) only if f is constant‘

Exponential speed up: f was evaluated once rather than 2" — 1 times
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