
Problem Set 3 - Simulation of quantum circuits

Computação Quântica 2018/2019

March 18, 2019

This set requires the module System.Random, from Haskell’s libraries, to be
imported. Documentation is available here. Modules Data.Complex and
Data.List may also be helpful in solving the problem set.

Consider the column vector representation of a multi-qubit quantum state. Each entry
of the vector corresponds to the complex coefficient of an associated orthonormal basis state.
For the quantum circuit model of computation, the computational basis is typically used;
it is obtained by picking the same basis for each qubit, taking the basis which is the tensor
product of all the (individual qubit) bases. As an example, admit a general two-qubit state
|q0q1〉 = α|00〉 + β|01〉 + γ|10〉 + ζ|11〉. After measurement, the state will collapse to any of
the basis states with nonzero amplitude.

|q0q1〉 →

α
β
γ
ζ

|00〉
|01〉
|10〉
|11〉

measurement→

0
1
0
0

|01〉

In the above example, the state collapsed into |01〉 - this event had a β2 probability of
occurrence. The column vector describing the measured state reflects that change (the kets
to the right of each vector are presented for better comprehension).

1. Keeping the above information in mind, and knowing that the System.Random module
of Haskell allows for the generation of a pseudorandom Float between 0 and 1, we can
start building a state measurement simulator.

(a) Build a function amplitude acc :: [[Complex Float]] -> [Float] to create
a list of Float corresponding to the cumulative squared values of the coefficients of
an input quantum state. Example:

Input: [[α],[β]] ; Output: [α2 ,α2 + β2]

1

http://hackage.haskell.org/package/random-1.1/docs/System-Random.html

(b) Build a function meas acc :: [Float] -> Float -> [Float], that takes a list
output by amplitude acc and a Float (which should be random, but we’ll handle
that later), and returns a string corresponding to the basis state associated with
the interval in which the Float falls relative to the accumulated list. Example:

Inputs: [0.5 , 1.0] 0.7 ; Output: [0.0 , 1.0]

Note: it may be easier to visualize the input list as containing the upper limit of
the interval it contains, with the lower limit defined by the previous entry of the
list. The above list contains the interval [0, 0.5[in its first entry, and [0.5 , 1.0[in
the second one.

(c) Implement a function state to char :: [Float] -> [Char] that takes a mea-
sured quantum state (i.e. the output of meas acc) and returns a string describing
the corresponding state ket. Example:

Input: [0.0 , 1.0, 0.0, 0.0] ; Output: "01"

(d) Verify that the previous functions work by implementing an IO function meas:

meas :: [[Complex Float]] -> IO [Char]

meas x = do

n <- randomIO :: IO Float

return $ state_to_char $ meas_acc (amplitude_acc x) n

This function takes any quantum state in the form [[Complex Float]] and outputs
a string describing the measured basis state. Apply the function multiple times to
the same superposition state (obtained for example by applying the Hadamard gate
to |0〉), and check the results.

2. A single measurement of a quantum state does not give much information other than
the resulting state having a non-zero probability of occurring. The study of quantum
circuit measurements, either in a simulator or a quantum device, typically requires a
great number of executions (also known as shots) and associated results, to accurately
determine probability amplitudes of basis states.

(a) Implement a function shots :: [[Complex Float]] -> Int -> IO [[Char]]

that takes a quantum state and an Int n, and returns a list containing n mea-
surement strings. Example (had, ‘p‘ and q0 were defined in previous classes):

Inputs: (had ‘p‘ q0) 4 ; Output: ["0", "1", "0", "0"]

Page 2

(b) For better visualization of simulation results, implement a function

freqs :: [[Complex Float]] -> Int -> IO [([Char], Int)]

that, like shots, takes a quantum state and an Int n. This function outputs
measurement results as a tuple containing the measured state, and the number of
times it occurred. Example:

Inputs: (had ‘p‘ q0) 100 ; Output: [("0",54),("1",46)]

Note: alternatively, implement a function freq ::IO [[Char]] -> IO [([Char],

Int)] that takes a list of measured results (i.e. the output of shots) and converts
it into a tuple containing the measured state and the number of times it occurred.

Page 3

