
Lecture 3: Computational complexity

MIEFis - Quantum Computation, L. S. Barbosa, 2018-19

Summary.
(1) Notion of growth rate of a function. Examples.

(2) Case study: closure operations.

(3) Computational complexity. The class P of polynomial decidable languages. P 6= NP?

1 Analysis of algorithms

Introduction.

The focus of this lecture is computational efficiency, i.e. the attempt to quantify the amount
of computational resources required to solve a given problem. The efficiency of an algorithm
will be discussed by studying how its number of basic operations scales as the size of the input
increases.

A fundamental message is that the efficiency of an algorithm is to a considerable extent much
more important than the technology used to execute it.

Example

Integer multiplication by the repeated addition algorithm (to compute x · y, just add x to itself
y − 1 times) or by the usual grade-school algorithm illustrated. For example, multiplying 577
by 423 using repeated addition requires 422 additions, whereas doing it with the grade-school
algorithm takes 3 multiplications of a number by a single digit and 3 additions. Even for 11-digit
numbers, a pocket calculator running the grade-school algorithm would beat the best current
supercomputer running repeated addition.

Growth rate of a function.

Example: transitive closure of R ⊆ A2

from ‘above’ R∗ is the smallest relations containing R that is transitive and reflexive.

from ‘below’

R∗ = {(a, b) | a, b ∈ A there exists a path from a to b in R}

which suggests an algorithm:

1

Algorithm 1: TC1.
R∗ := ∅;
for i := 1..n do

for each i-tuple (b1, · · · , bi) ∈ Ai do
if it is a path then
R∗ := R∗ ∪ {b1, bi}

end
end

One may inquiry this algorithm on

• correctness vs termination

• ... but when?

Growth rate for functions

O(f) = {g ∈ NN | ∃c,d∈N+. ∀n. g(n) ≤ c.f(n) + d}

Stating that
h ∈ O(f)

means that h is no faster than f.

Example: p(n) = 31n2 + 17n+ 3

Clearly p(n) ≤ 48n2 + 3, because n2 ≥ n. Thus f ∈ O(−2) with constants 48 and 3.
However, −2 ∈ O(p) with constants 1 and 0.

Exercise 1

Define f ∼ g iff f ∈ O(g)∧ g ∈ O(f). Prove ∼ is an equivalence relation.

Theorem

For any polynomial p(n) = cknk+ · · ·+ c1n+ c0, p ∈ O(−k) with constants
∑

1≤i≤k ci and c0.

2

Theorem

Any two polynomials p and q with the same degree verify p ∼ q.

Theorem

The growth rate of function 2n is higher than the one of an arbitrary polynomial.

Proof.
We want to show that

ni ∈ O(2n) i.e. ni ≤ c2n + d (1)

Let c = (2i)i and d = (i2)i, and consider two cases:

• n ≤ i2 ⇒ ni ≤ c2n + d, because ni ≤ d

• n > i2 ⇒ ni ≤ c2n + d, because ni ≤ c2n

Note that ni ≤ (iq+i)i = ii(q+1)i, for q the integer quotient of n by i (i.e. iq ≤ n ≤ i(q+1)).
Now,

ii(q+ 1)i

≤ { n ≤ 2n}

ii(2q+1)i

≤ { definition of c}

c2qi

≤ { definition of q}

c2n

Observe now that if a polynomial had the same growth rate than −2, then any polynomial of a
higher degree would have the same rate (because we’ve just proved that no polynomial grows as
fast as −2). But this leads to a contradiction because, as shown above, polynomials of different
degrees have different rates of growth.

�

Clearly, 2n has a higher rate of grow than any polynomial. Other exponential functions — for
example, 27n, nn, n!, 2n2 or 22n — have even higher rates of growth.

3

2 Case study: Closure algorithms

Computing R∗.

Algorithm 2: TC2.
R∗ := ∅;
for i := 1..n do

for each i-tuple (b1, · · · , bi) ∈ Ai do
if it is a path then
R∗ := R∗ ∪ {b1, bi}

end
end

The algorithm examines each sequence (b1, · · · , bi); if this is a path add to the solution. Thus,
the total number of basic operations (test and add) is

n(1+ n+ n2 + · · ·+ nn)

i.e. in each of the n iterations look for paths of length up to n. Therefore, TC1 ∈ O(nn+1).

Algorithm 3: TC3.
R∗ := R ∪ {(a, a) | a ∈ A};
while ∃ai,aj,ak∈A. (ai, aj), (aj, ak) ∈ R∗, (ai, ak) /∈ R∗ do
R∗ := R∗ ∪ {(ai, ak)}

end

• In each iteration one pair (if any) is added. Thus, the maximum number of additions
corresponds to the maximum number of pairs available, i.e. n2.

• In each iteration the algorithm searches for n3 triples.

Therefore, TC3 ∈ O(n2 × n3) = O(n5).

4

Exercise 2

The algorithm TC3 repeatedly searches for violations of the transitivity property. However, each triple
must be checked again and again since the introduction of a new pair may entail new violations in triples
that have already been checked. A better algorithm of O(n2 × n) = O(n3) can be obtained by imposing
an order to the triples so that a new pair added does not violate the transitivity condition established for
triples already considered. In the algorithm below, TC4, triples are ordered by the middle index (in in-
creasing order). Explain why the algorithm works and its growth rate.

Algorithm 4: TC4.
R∗ := R ∪ {(a, a) | a ∈ A};
for j = 1, 2, · · · , n do

for i = 1, 2, · · · , n and k = 1, 2, · · · , n do
if (ai, aj), (aj, ak) ∈ R∗ but (ai, ak) /∈ R∗ then

R∗ := R∗ ∪ {(ai, ak)}
end

end

Closure problems.

A subset C ⊆ A is closed for a relation R ⊆ An+1 if

bn+1 ∈ C ⇐ b1, · · · , bn ∈ C ∧ (b1, · · · , bn, bn+1) ∈ R

e.g.

• N is closed for +

• the set of ancestors is closed for the relation parent-of

• any set is closed for ⊆

Closure property: The set C is closed under relations R1, · · · , Rm
cf, the usual construction the smallest set that contains A and has property φ. But note that not
all properties guarantees the existence of a smallest set satisfying φ. However,

5

Theorem

If φ is a closure property defined by relations R1, · · · , Rm on a set A and B ⊆ A, then there
exists the smallest set C st B ⊆ C and C has property φ.

Proof.
Let φ be defined by a relations R1, · · · , Rm and S denote the set of subsets ofA containing B and
closed for each Ri. Clearly S 6= ∅ (why?). Then, define C =

⋂
S (which is well defined because

S is non empty). Then,

• B ⊆ C, by construction.

• C is closed under all relations R1, · · · , Rm. To see this, suppose a1, · · · , an−1 ∈ C and
(a1, · · · , an−1, an) ∈ R. All sets in S contain a1, · · · , an−1 and because all of them are
closed, all have an. Thus, an ∈ C.

• C is minimal: no strict subset C ′ of C exists (otherwise C ′ ∈ S and C ⊆ C ′).

�

Exercise 3

Set C in the theorem above is the closure of B under relations R1, · · · , Rm. Determine the closure of
the singleton set containing yourself under the relation parent of. Similarly, determine the closure of set
{0, 1} under addition and the closure of the set of natural numbers under subtraction. Note that R∗, for a
relation R is the closure of R under transitivity and reflexivity.

Theorem

Any closure property over a finite set can be computed in polynomial time.

Proof.
Algorithm 5: Computing a generic closure.
C◦ := C;
while ∃1≤i≤k and ri elements aj1 · · ·ajri−1

∈ C◦ and ajri
∈ D \ C◦ . (aj1 · · ·ajri) ∈ Ri do

C◦ := C◦ ∪ {ajri }

end

Thus, the algorithm is O(nr+1) where n is the cardinal of D and r is the greatest arity of all
relations considered.

�

Theorem

Any algorithm in polynomial time can be rendered as the computation of a closure over a set for
a set of relations.

6

3 Computability vs complexity

The Travelling Salesman Problem.

Given a map with n cities and distances in Km, produce an itinerary that minimizes the total
distance travelled.

• Clearly solvable (e.g. systematic examination of all itineraries)

• but unsolvable in any practical sense by current computers: too many itineraries ((n− 1)!)
to be explored. Notice that a (n−1)! algorithm goes faster that 2n. For 40 cities the number
of itineraries is enormous: 39!. Even if 1015 of them could be inspected per second (a value
our of reach of current supercomputers) the required time for completing the calculation
would be several billion lifetimes of the universe.

What is a practically feasible algorithm?

... should run for a number of steps bounded by a polynomial in the length of the input, i.e. have
a polynomial rate of growth.

Polynomially decidable languages.

A language is polynomially decidable if there is a polynomially bounded Turing machine that de-
cides it, i.e. a Turing machine which always halts after at most p(n), where p(n) is a polynomial
and n is the length of the input.

The class P of such languages is the quantitative analog of the class of recursive languages. As
the latter it is closed under complement, union, intersection, concatenations and Kleene star. But,
on the other hand, not all recursive languages are polynomially decidable.

Theorem

S /∈ P, where
S = {"M" "w" |M accepts input w after at most 2|w| steps}

Proof.

If S ∈ P, language

S ′ = {"M" |M accepts input "M" after at most 2|"M"| steps}

and its complement are also in P. This means that there exists a polynomially bounded Tur-
ing machine B which accepts all descriptions of Turing machines that fail to accept their own
description in 2n steps, where n is the length of the description, and halts in p(n) steps for a
polynomial p(n).

Does B accept its own description "B"?

7

• If YES then B fails to accept "B" within 2|"B"| steps. However, B halts in |"B"| steps (because,
by assumption, the complement of S ′ is in P. This means that B halts much before 2|"B"|.
Thus it should reject "B", which leads to a contradiction. Note that there is always an integer
n0 such that p(n) ≤ 2n for all n ≥ n0, and we may safely assume |"B"| ≥ n0.

• If NO a similar argument also leads to contradiction.

Problems.

Reachability. Given two nodes of a finite graph decide if there is a path connecting them.

Is a variant of the reflexive-transitive closure problem. Can be solved by computing this
closure in time O(n3) and inspect the result.

A problem is a set of inputs, typically infinite, with a Boolean question to be asked of each input.
A problem needs to be encoded as a language problem so that its complexity can be analysed in
a common setting. For example, the Reachability problem can be reduced to a decision problem
for the language

R = {K(G)s(i)s(j) | there is a path in G connecting nodes ni to nj}

where K and s are suitable binary encoding functions for graphs and integers.

Other problems

Euler Cycle. Given a graph is there a closed path in it that uses each edge exactly once?

Note that the path can go many times through the same node (or even not at all if there
are isolated nodes). It can be proved that the necessary condition on a graph to have such
a path is that i) all nodes have equal numbers of incoming and outgoing edges, and ii) for
each pair of nodes, neither of which isolated, there is a path connecting them. So, clearly
the corresponding language

G = {K(G) | G has an Euler cycle}

where K(G) is some encoding of graphs as strings, is in n P.

Hamilton Cycle. Given a graph is there a cycle that passes through each node exactly once?

No polynomial algorithm is known. Of course the trivial one (generate all paths and
choose) is not polynomial.

Equivalence of Finite Automata. Given two deterministic automata, determine whether they
recognise the same language?

The problem is polynomial, as it is the variant in which only regular expressions are con-
sidered. However, one cannot conclude about the latter just by reducing to the former:
actually, the generation of a finite automaton from a regular expression may increase ex-
ponentially the number of states.

8

Integer Partition. Given a set of n nonnegative integers represented in binary, is there a subset
S of the original set such that

∑
i∈S ai =

∑
i 6∈S ai?

The algorithm is O(nV) where V is the sum of all numbers in the original set divided by
2. In spite of its polynomial appearance, the problem is not polynomial in the length of the
input. The reason is that the integers are encoded in binary: if all integers are about 2n,
then S is close to 2n × n

2
.

Satisfiability. Is a Boolean formula in conjunctive normal form satisfiable?

No polynomial algorithm is known. However, if reduced to formulas with a maximum of
two literals, it becomes polynomial.

The party problem. Given a list of acquaintances anda list of all pairs among them who do not
get along, find the largest set of acquaintances you can invite to a dinner party such that
every two invitees get along with one another

This is equivalent to the independent set problem mentioned below.

Optimisation problems

Require to find the best among many possible solutions, according to some cost function. The
trick to transform optimisation into language problems is to fix each input with a bound on the
cost function. For example, the Traveling Salesman problem can be rephrased as

Given an integer n ≥ 2, a n× n distance matrix, and an integer b ≥ 0, find a permutation of n
such that its cost is less or equal to b (which, to build up intutition, may be regarded as a budget).

Independent Set. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set
of vertices with |s| ≥ K such that for any two vertices in s there is no edge connecting
them?

Clique. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of vertices
with |s| ≥ K such that for all vertices in s there is an edge connecting each pair?

Node Cover. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of
vertices with |s| ≤ K such that s covers all edges of the graph? (cf, minimising guards in a
museum).

Note that a set of nodes covers an edge if it contains at least one endpoint of the edge.

No polynomial algorithms are known.

The class NP.

Most interesting problems mentioned above for which no polynomial algorithm exists — Trav-
eling Salesman, Satisfiability, Independent Set, Integer Partition, etc., can be solved by polyno-
mially bounded nondeterministic Turing machines. All computations of such machines do not
continue for more than polynomially many steps.

9

Figure 1: (from Wikipedia)

This defines the classNP (of nondeterministic polynomial languages), i.e. of languages that can
be decided by a polynomially bounded nondeterministic Turing machine. Note the meaning of
decision in this context. For a nondeterministic Turing machine deciding a language is required
that all the computations of the machine must reject an input not in the language, whereas an
input from the language must be accepted by at least one computation.

Although determinism and nondeterminism in the definition of Turing machines do not interfere
on their expressiveness in what concerns decidability, separating determinism form nondeter-
minism at the polynomial level (the P 6= NP conjecture), remains unsolved.

Another way to put it is to say that the complexity class NP that aims to capture the set of
problems whose solutions can be efficiently verified. By contrast, the class P contains decision
problems that can be efficiently solved. The P versu5 NP question asks whether or not the two
classes are the same.

Actually NP does not refer to non-polynomial, but to nondeterminism.

The problems described above share an important completeness property: All problems in NP
can be reduced to them (just as all recursively enumerable languages reducing to the halting
problem). Such problems are called NP-complete, and they are the hardest of all NP problems.
The number of real-life problems that are known to be NP-complete is enormous. Each of
them has a polynomial algorithm iff P = NP. NP-complete problems are in NP, the set of all
decision problems whose solutions can be verified in polynomial time; or, alternatively, solved
in polynomial time on a non-deterministic Turing machine. A problem inNP isNP-complete if
every other problem in NP can be transformed (or reduced) into p in polynomial time.

NP-hard problems live beyond NP, i.e. they are at least as hard as the hardest problems in NP.
A problem is NP-hard if every problem in NP can be reduced in polynomial time to it. There
are problem which are NP-hard but not NP-complete. For example the halting problem which
fails to be decidable.

10

References.
My preference on complexity theory is Papadimitriou’s wonderful book [3]; reference [2] pro-
vides an interesting alternative. S. Arora and B. Barak book [1] is a more recent textbook cover-
ing recent achievements in complexity theory (including challenges from quantum computation)
and putting them in the context of the classical results. Worth reading.

References

[1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2009.

[2] D. Z. Du and K. I. Ko. Theory of Computational Complexity. Addison-Wesley, 2000.

[3] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

11

