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Quantum algorithms

Principles (review)

• Keep separate input-output registers (standard practice from
reversible classic computation)

• Fix initial setting (preparation): typically the qubits in the initial
classical state are put into a superposition of many states;

• Transform, through unitary operators applied to the superposed
state;

• Measure, i.e. projecti onto a basis vector associated with a
measurement tool.
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Quantum algorithms

Uf is specified as a reversible (classical) transformation taking typically
computational-basis states into computational-basis states. Its extension

to arbitrary complex superpositions of computational-basis states is
necessarily unitary.

Uf (|x〉n|y〉m) = (|x〉n|y ⊕ f (x)〉m
yielding, for y = 0

Uf (|x〉n|0〉m) = (|x〉n|f (x)〉m
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Quantum algorithms

Build a superposition

(H ⊗ H)(|0〉 ⊗ |0〉) =
1√
2
(|0〉+ |1〉) 1√

2
(|0〉+ |1〉)

=
1

2
(|00〉+ |01〉+ |10〉+ |11〉)

=
1

2
(|0〉+ |1〉+ |2〉+ |3〉)

which generalises to

H⊗n|0〉n =
1√
2n/2

∑
0≤x≤2n

|x〉n
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Quantum algorithms

Quantum ’parallelism’

Uf (H
⊗n ⊗ Im)(|x〉n|0〉m) =

1

2n/2

∑
0≤x≤2n

Uf (|x〉n|0〉m)

=
1

2n/2

∑
0≤x≤2n

|x〉n|f (x)〉m

The ’quantum parallelism’ miracle is, to a great extent, only apparent.
Actually, the result of the calculation is not 2n evaluations of f : those
evaluations characterize the form of the state that describes the output
of the computation.
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Quantum algorithms

What works indeed?

• What remains is the fact that the random selection of the x , for
which f (x) can be learned, being made only after the computation
has been carried out.

• Note that asserting that the selection was made before the
computation corresponds to look at a superposition as merely a
probabilistic phenomenon (i.e. the qubit described by a
superposition is actually in one or the other of the basis states).

• Further computation makes possible to extract useful information
about relations between the values of x for several different values
of x , which a classical computer could get only by making several
independent evaluations.
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Quantum algorithms

What works indeed?

• The price to be paid is the loss of the possibility of learning the
actual value f (x) for any individual x — cf Heisenberg uncertainty
principle.

• cf the mistaken view that the quantum state encodes a property
inherent in the qubits: it rather encodes only the possibilities
available for the extraction of information from them.
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The Bernstein-Vazirani algorithm

The problem
Let w be an unknown non-negative integer less than 2n and consider a
function f (x) = w · x , where

w · x = w0x0 ⊕ w1x1 ⊕ w2x2 ⊕ · · ·

How many times one has to call f to determine the value of the integer
w?

• Classically, n times: the n values w · 2m, for 0 ≤ m < n.

• In a quantum computer a single invocation is enough, regardless of
the number n of bits.
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The Bernstein-Vazirani algorithm

• Prepare the single qubit output register as H |1〉 since oracle Uf

applied to |x〉n|y〉1 flips the value y of the output register iff
f (x) = 1. Thus,

Uf |x〉n
1√
2
(|0〉− |1〉) = (−1)f (x) |x〉n

1√
2
(|0〉− |1〉)

converting a bit flip to an overall change of sign.
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The Bernstein-Vazirani algorithm

• Superposition

H⊗n|x〉n =
1

2n/2

1∑
yn−1=0

· · ·
1∑

y0=0

(−1)
∑n−1

j=0 xjyj |yn−1〉 · · · |y0〉

=
1

2n/2

2n−1∑
y=0

(−1)x·y |y〉n

cf

H |x〉1 =
1√
2
(|0〉+ (−1)x |1〉) =

1√
2

1∑
y=0

(−1)xy |y〉
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The Bernstein-Vazirani algorithm
Putting everything together,

(H⊗n ⊗ I )Uf (H
⊗n ⊗ H) |0〉n|1〉1

= (H⊗n ⊗ I )Uf

 1

2n/2

∑
0≤x≤2n−1

|x〉

 1√
2
(|0〉− |1〉)

=
1

2n/2

(
H⊗n

2n−1∑
x=0

(−1)f (x)|x〉

)
1√
2
(|0〉− |1〉)

=
1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)f (x)+x·y |y〉 1√
2
(|0〉− |1〉)

= |w〉n|1〉1

because
2n−1∑
x=0

(−1)w·x(−1)y·x =

n∏
j=1

1∑
xj=0

(−1)(wj+yj)xj
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The Bernstein-Vazirani algorithm: another explanation

Some oracles can be implemented by simple circuits.

• In this case the action of Uf on the computational basis is to flip
the 1 qubit output register once, whenever a bit of x and the
corresponding bit of w are both 1.

• Put one cNOT for each nonzero bit of w , controlled by the qubit
representing the corresponding bit of x .

• Their combined effect on every computational basis state is
precisely that of Uf .
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The Bernstein-Vazirani algorithm: another explanation

Example of the encoding for w = 11001
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The Bernstein-Vazirani algorithm: another explanation

Envelop Uf into the algorithm

The effect is to convert every cNOTgate in the equivalent representation
of Uf from Cij to

Cji = (HiHj)Cij(HiHj)

reversing the target and control qubits.
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The Bernstein-Vazirani algorithm: another explanation

Because: Law and its application
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The Bernstein-Vazirani algorithm: another explanation

Thus

• After the reversal, the output register controls every one of the
cNOT gates, and since the state of the output register is |1〉, every
one of the NOT operators acts.

• That action flips just those qubits of the input register for which the
corresponding bit of w is 1.

• Since the input register starts in the state |0〉n , this changes the
state of each qubit of the input to |1〉, iff it corresponds to a
nonzero bit of w .

• Thus, in the end, the state of the input register changes from |0〉n
to |w〉n.
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Simon’s algorithm

The problem
Determine the period z of a function f from n to n − 1 bits periodic
under ⊕:

f (x ⊕ z) = f (x)
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Simon’s algorithm, classically

• Compute f for sequence of values until finding a value xj such that
f (xj) = f (xi ) for a previous xi . Then

z = xj ⊕ xi

• At any previous stage, if this procedure has picked m different
values of x , then one concludes that z 6= xj ⊕ xi for all such values.

• Thus, at most
1

2
m(m − 1)

possible values for z have been discarded (vs 2n − 1 possible values
for z).

• The procedure is unlike to succeed until m becomes of the order of
2n/2 — the execution time grows exponentially with the number of
bits n.
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Simon’s algorithm, going quantum

• Transform the state of the input register into the uniformly
weighted superposition of all possible inputs by the application of
the usual recipe (H⊗n);

• Apply Uf obtaining

1

2n/2

∑
0≤x≤2n−1

|x〉|f (x)〉

• Measure the output register. Since f appears in two terms in the
expression above that have the same amplitudes, by the generalized
Born rule, the input register will be left in the state

1√
2
(|x0〉+ |x0 ⊕ z〉)

for that value of x0 for which f (x0) agrees with the random value of
f given by the measurement.
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Recall: the generalized Born rule

... applies on measuring a single one of n + 1 qubits.

The joint state can be taken as

|Ψ〉 = α0|0〉|φ0〉n + α1|1〉|φ1〉n
with |α0|

2 + |α1|
2 = 1, following from the general fom

|Ψ〉n+1 =

2n+1−1∑
x=0

γ(x)|x〉n+1
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Recall: the generalized Born rule

Thus,

|Ψ0〉n =
1

α0

2n−1∑
x=0

γ(x)|x〉n |Ψ1〉n =
1

α1

2n−1∑
x=0

γ(2n + x)|x〉n

α2
0 =

2n−1∑
x=0

|γ(x)|2 α2
1 =

2n−1∑
x=0

|γ(2n + x)|2

i.e., if one measures only the single qubit whose state symbol is explicitly
separated out from the others in n + 1 qubits state, then this single
measurement gate will indicate x (0 or 1) with probability |αx |

2, after
which the n + 1 qubits state can be taken to be the product state

|x〉|Ψx〉n
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Simon’s algorithm, going quantum

• A superposition of two computational-basis states, associated with
two n-bit integers, that differ by z was computed. But we are not
able to known those two integers ...

• ... it also does not help to run the algorithm many times, which is
likely to get states of a similar form for different random values of
x0...

• A direct measurement will just produce a random number (cf x0 or
x0 ⊕ z): however the number z one is interested in appears only in
the relation between those two random numbers, only one of which
one can learn.
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Simon’s algorithm, going quantum

How to extract this relation (i.e. number z)?
Recall H⊗n|x〉n, from the Bernstein-Vazirani algorithm. Thus,

H⊗n 1√
2
(|x0〉+ |x0 ⊕ z〉) =

1

2(n+1)/2

2n−1∑
y=0

((−1)x0·y) + (−1)(x0⊕z)·y ) |y〉

=
1

2(n−1)/2

∑
z·y=0

(−1)(x0⊕y) |y〉

because, since (−1)(x0⊕z)·y = (−1)x0·y = (−1)z·y , the coefficient of |y〉
above becomes: {

0 ⇐ z · y = 1

2(−1)x0·y ⇐ z · y = 0
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Simon’s algorithm, going quantum

How to extract this relation (i.e. number z)?
The sum in the red expression

H⊗n 1√
2
(|x0〉+ |x0 ⊕ z〉) =

1

2(n+1)/2

2n−1∑
y=0

((−1)x0·y) + (−1)(x0⊕z)·y ) |y〉

=
1

2(n−1)/2

∑
z·y=0

(−1)(x0⊕y) |y〉

is restricted to those y for which z · y = 0.
Thus, measuring the input register, yields, with equal probability, any of
the values of y for which z · y = 0, i.e. for which

n−1∑
i=0

yizi = 0 (mod 2)
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Simon’s algorithm, going quantum

Are we done?
Each invocation of Uf yields a random y satisfying z · y = 0, which
allows one to determine z with high probability with not many more than
n iterations.
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Simon’s algorithm, going quantum

Are we done?

• A single invocation of Uf gives one such y and thus a nontrivial
subset of the n bits of z whose modulo-2 sum vanishes.

• One of those bits is entirely determined by the others in the subset,
which cuts the number of possible choices for z in half: from 2n − 1
to 2n−1 − 1 (the −1 comes from assumption z 6= 0).

• This assertion above is probabilistic: there is a very small
probability, 1

2n−1 , that y = 0 ...

• Repeating the process there is a very high probability the getting a
new value y , different from 0 and the ones already found, therefore
yielding a new nontrivial relation among the bits of z which reduces
again the number of candidates by ar factor of 2.
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Simon’s algorithm, going quantum

It can be shown that with n + d iterations, the probability of acquiring
enough information to determine z is given by

(
1 −

1

2n+d

)(
1 −

1

2n+d−1

)
· · ·
(

1 −
1

2d+2

)
< 1 −

1

2d+1

Conclusion
With a relatively small d , period z is found with very high probability, no
matter how large n may be.
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Going further: Shor and beyond

The essence of Simon’s algorithm, common to many other quantum
algorithms resides in combining

• Playing with interference and superposition to acquire fundamental
information to solve the problem,

• with specific mathematical arguments to confirm that the output of
the quantum procedure does indeed provide the needed information
and to fix the (probabilistically relevant) number of iterations.
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Going further: Shor and beyond

Shor algorithm (1994)
Factoring

N = p · q

for p, q very big primes, is closely tied to the ability to find the period of

nx modN

for integers n that do not share factors with N.

Combines efficient period-finding quantum procedures with non trivial
results in number theory.
(cf details on Assis Azevedo talk on Q-Days)
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Going further: Shor and beyond

• Very hard problem: dealing with functions on the integers whose
values within a period are virtually random from one integer to the
next, and therefore give no hint of the value of the period itself.

• Major speed-up (scales slightly above n3, if n is the number of bits
in the binary representation of the period).

• Huge impact
(cf JMValena talk on Q-Days on post-quantum crypto).
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Which problems a Quantum Computer can solve?

No magic ...

• One can store and manipulate a huge amount of information in the
states of a relatively small number of qubits,

• ... but measurement will pick up just one of the computed solutions
and colapse the whole (quantum) state

... but engineering:
As amplitudes interfere, a suitably engineered algorithm will ensure that
computational paths leading to a wrong answer would cancel out, and
the ones leading to a correct answer would reinforce, thus boosting the
probability of finding them when the state is measured at the end.
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Complexity classes

P
Problems that can be solved efficiently, in polynomial time.
Example: Given a road map showing n towns, can you get from any town
to every other town?

NP
Problems whose solutions, once found, can be recognized as correct in
polynomial time — even though the solution itself might be hard to find.
Example: Given a map with thousands of islands and bridges, find a tour
that visits each island once

NP complete
Problems that if an efficient solution to one of them existed, it would
provide an efficient solution to all NP problems.
Example: Given a map, can you color it using only three colours so that
no neighboring countries are the same colour?
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The BQP class

Bounded-error Quantum Polynomial time: contains all the decision
problems that quantum computers can solve efficiently.

P ⊆ BQP
Quantum computers can solve all the problems that classical computers
can solve (Bernstein and Vazirani, 1993).
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The BQP class

BQP cannot extend outside PSPACE, which also contains all the NP
problems.

PSPACE
PSPACE problems are those that a conventional computer can solve
using only a polynomial amount of memory but possibly requiring an
exponential number of steps.
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Which problems a Quantum Computer can solve?

• 1994: Peter Shor’s factorization algorithm (exponential speed-up),

• 1996: Grover’s unstructured search (modest, quadratic speed-up,
most relevant in practice),

• 2018: Advances in hash collision search, i.e finding two items
identical in a long list — serious threat to the basic building blocks
of secure electronic commerce.

• 2019: Announced first BQP algorithm with no classical solution
(based on oracle estimation)

• ...

• ... but no quantum algorithm is known to solve a NP-complete
problem.

An efficient algorithm for an NP-complete problem would mean NP = P.
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What we (think we) know?

• A quantum algorithm capable of solving NP-complete problems
efficiently would, similarly to what happens in Simon’s or Shor’s
algorithms, have to resort and exploit the problems’ structure,

• Achieve an exponential speedup by treating the problems as
structureless black boxes, consisting of an exponential number of
solutions to be tested in parallel, is an illusion.

• Recently research has shown that modest, but often relevant
speedups are the limit for many problems such as searching a list,
counting ballots in an election, finding the shortest route on a map,
and playing games of strategy such as chess or Go.

• If quantum computers ever become a reality, the killer app for them
will be on simulating quantum physics — key for chemistry,
nanotechnology, etc.
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