
Luı́s Soares Barbosa

Departamento de Informática da Escola de Engenharia
Universidade do Minho

Quantum Computing

Algorithms and Computability

Universidade do Minho, February, 2018



Abstract

This document contains the summaries of an introductory module on background concepts (sets,
orders and groups) and computability. The module is part of the Quantum Computation curricu-
lar unit included in the syllabus of 4th year of MIEFis (MSc on Engineering Physics), offered at
the University of Minho.



Lecture 1: Sets, Orders, Groups

Summary.
(1) Sets, functions, relations. Isomorphism and cardinality.

(2) Ordered structures: preorders, partial orders, lattices. Complete lattices. Ideals and filters.
Boolean algebras. Application: semantics of recursive definitions. The theorem of Knaster-
Tarski. Lattices as algebraic structures.

(3) Algebra and order. Reversibility. Groups as a prototypical algebraic structure. Groups of
permutations. Action of a group. Application: Cayley theorem.

1 Sets, relations, cardinality

• Set, function, composition, isomorphism.

• Powerset (2A); partition.

• Binary relations; 2A×B ∼= 2A
B

• Equivalence relations. Quotient set as a partition.

Finite and infinite sets.

• equicardinality and isomorphism.

• finite vs infinite

• countable vs uncountable

Theorem
The union of a finite number of countably infinite sets is countably infinite.

X x0

��

x1

��

x3

��

· · ·

Y y0

��

y1

��

y3

��

· · ·

Z z0

GG

z1

GG

z3

GG

· · ·

Does the argument generalise to the union of a countably infinite number of ...? E.g., is N × N
countably infinite?

1



The diagonalization principle.

For a binary relation R, define the diagonal set D = {a ∈ A | (a, a) 6∈ R}. Then, forall a ∈ A
sets D and Ra = {b ∈ A | (a, b) ∈ R} are distinct.

Theorem

2N is uncountable.

Proof.
If this is not the case, and 2N is countably infinite, there is an enumeration of sets such that

2N = {R1, R2, · · ·}

LetD = {n ∈ N | n 6∈ Rn}. SetD is a set of natural numbers and thus should appear somewhere
in the enumeration R1, R2, · · · . Suppose D = Rj for some value j. Does j ∈ Rj? If yes, by
definition of D, j 6∈ D, which contradicts D = Rj. If, alternatively, j 6∈ Rj then j ∈ D which is
again a contradiction.

2 Orders

• pre-order

• partial order

• lattice, bounded lattice and complete lattice

Exercise 1

In a poset (P,v) define the supremum of S, represented by tS, as the least upper bound (lub) of S.
The dual notion of infimum, uS is defined as the greatest lower bound (glb) of S.

Characterise lub and glb in (P(X),⊆) and (N, div), where div is integer division. Suppose P is a poset
with a top and a bottom element > and ⊥, respectively, i.e. uP = ⊥ and tP = >. Explain why u∅ = >
and t∅ = ⊥.

Exercise 2

A morphism between posets (P,v) and (Q,⊆) is a function f : P −→ Q such that

x v y ⇒ f(x) ⊆ f(y)

i.e. a monotonic function. What extra structure must a morphism between lattices, bounded lattices or
complete lattice preserve?

2



Exercise 3

A lattice is complete if infimum and supremum are defined for arbitrary subsets. Characterise as com-
plete lattices i) the set of all sub-spaces of a vectorial space; ii) the set of sub-groups of a group; iii) any
finite lattice.

The Knaster-Tarski theorem.

A most relevant result about complete lattices for the semantics of computation is the theorem of
Knaster-Tarski [16] on the existence of fixed points of a monotonic function. Such special points
(for which x = f(x) give meaning to recursive functions.

Theorem
Let (U,v) be a complete lattice and f : U −→ U a monotonic function. The least and the
greatest fixed points of f are given by

m =
l

{x ∈ U | f(x) v x}

M =
⊔

{x ∈ U | x v f(x)}

respectively.

Proof.
Let us show that m is the least fixed point of f. Let X = {x ∈ U | f(x) v x} and choose x ∈ X
arbitrarily. Clearly, m v x and, f being monotonic, f(m) v f(x). On the other hand, f(x) v x,
because x ∈ X. Thus, we may conclude that, for all x ∈ X, f(m) v x. This means that m is
the least pre-fixed point of f. In particular, f(m) v m, which leads us to f(f(m)) v f(m). We
conclude that f(m) ∈ X and, thus, m v f(m). But then f(m) = m as expected. The second
part of the theorem comes from this one; if f is monotonic in (U,v), then it is also monotonic
in the complete lattice formed by the inverse order (U,w). If M is the least fixed point of f in
(U,w), it will be the greatest fixed point of the same function in (U,v).

Lattices as algebraic structures

Lattices can as well be seem as algebraic structures takingt andu as binary operations satisfying
the axioms for commutativity, associativity, idempotence, and the following absorption laws:

a t (a u b) = a
a u (a t b) = a

Clearly, a ≤ b ⇔ a t b = b ⇔ a u b = a.

3



3 Groups

... as a prototypical algebraic structure ...

A group (G, θ, u) is a set G with a binary operation θ which is associative, and equipped with
an identity element u and an inverse:

a−1θa = u = aθa−1

Note that in semigroup lacks inverse, and a monoid also drops the identity element.

Exercise 4

Show that (R+,×, 1) and (R+,+, 0) are groups. Prove that a bijection between them is obtained by
functions lne and e−.

Exercise 5

Show that
Sn = ({σ : n −→ n | σ is a permutation}, ·, id)

is a group. This is usually called the symmetry group of degree n.

Exercise 6

Prove the following properties:

1. aθb = aθc ⇒ b = c (dually, bθa = cθa ⇒ b = c).

2. a−1
−1

= a.

3. (aθb)−1 = b−1θa−1.

4. f(a−1) = f−1a.

5. The equation aθx = b has a unique solution x = a−1θb.

Cayley Theorem.

The set of bijections f : X −→ X over a set X with functional composition forms a group of
transformations (which is the identity? And the inverse?). The following is a main result in the
theory of groups:

4



Theorem
Every group is isomorphic to a group of transformations

Proof.
Let (G, θ, u) be a group. For each element a of G define a map fa : G −→ G such that
fa(x) = aθx.

Let us show that a new group T can be defined over the set of transformations above:

1. The (functional) composition of two elements of T is in T :

(fa · fb)(x) = fa(fb(x)) = fa(bθx) = aθ(bθx) = (aθb)θx = faθb(x)

2. For identity,
fu(x) = uθx = x

3. For inverse,
fa · fa−1(x) = aθ(a−1θx) = (aθa−1)θx = uθx = x

We have proved that T is a group (note that axioms are inherited from the properties of function
composition restricted to bijections). It remains to show that T is isomorphic toG. Let h : G −→
T be defined by h (a) = fa.

• Cllearly h(aθb) = faθb = fa · fb = h(a) · h(b) is a homomorphim between both groups.

• T is entirely composed of bijections fa for every element a ∈ G, thus h is a surjection.

• If a 6= b, then h(a) = fa 6= fb = h(b); thus h is injective.

Action of a group

A group (G, θ, u) acts over a set X through a function (the action) τ : G × X −→ X which
satisfies the following properties: τ(u, x) = x and τ(gθf) = τ(g, (τ(f, x)).

Exercise 7

Show that i) the group Sn acts over set n (initial fragment of N with n numbers), and ii) that every
group (G, θ, u) acts over itself through the map (g, x) 7→ gθxθg−1.

References.
There are several introductory textbooks on the mathematical background stuff discussed in this
lecture. I would recommend Paul Halmos’ very well written introductions to set theory [8] and
to modern logic from an algebraic perspective [9]. Davey and Priestley textbook [4] on ordered
structures is recommended for the second topic in the summary. For a very pleasant and solid,
although not elementary, reading on algebraic structures I can’t but recommend the book [13].

5



Lecture 2: Computability

Summary.
(1) The quest for a formal definition of algorithm.

(2) Turing machines. Universal Turing machines.

(3) Recursive functions. The Church-Turing thesis. The uncomputable.

1 The question

• What does it mean for a function to be computable?

• Are there any noncomputable functions?

• How does computational power depend on programming constructs?

Models Grammars
(Chomsky hierarchy)

finite memory: finite automata right-linear grammars
finite memory with stack: pushdown automata context-free grammars
linear bounded automata context-sensitive grammars
unrestricted memory:
Turing machines (Alan Turing)
Post systems (Emil Post)
µ-recursive functions (K. Gödel, J. Herbrand)
λ-calculus (A. Church, S. Kleene)
Combinatory logic (M. Schönfinkel, Haskell Curry)

unrestricted grammars

For those wondering on the use of grammars to specify computational models, notice that symbol
manipulation or parsing a sentence in a language bears a strong resemblance to computation.

The quest for formalising the concept of effective computability started around the beginning
of the twentieth century with the development of the formalist school of mathematics (Hilbert’s
programme) with the prospect of reducing all of mathematics to the formal manipulation of sym-
bols. The formalist program was eventually shattered by Kurt Gödel’s incompleteness theorem,
which states that no matter how strong a deductive system for number theory you take, it will
always be possible to construct simple statements that are true but unprovable. This theorem is
essentially a statement about computability.

Church-Turing thesis

All the formalisms above capture precisely the same intuition about what it means to be effec-
tively computable.

6



2 Turing machines

M = (Q,Σ, Γ, δ,�, �, s, t, r)

A Turing machine consists of a finite set of states Q, a semi-infinite tape that is delimited on the
left end by an endmarker � and is infinite to the right, and a head that can move left and right
over the tape, reading and writing symbols.

The input string is of finite length and is initially written on the tape in contiguous tape cells snug
up against the left endmarker �. The infinitely many cells to the right of the input all contain
a special blank symbol �. The machine starts in the start state s with its head scanning the left
endmarker. In each step it reads the symbol on the tape under its head. Depending on that symbol
and the current state, it writes a new symbol on that tape cell, moves its head either left or right
one cell, and enters a new state. The action it takes in each situation is determined by a transition
function

δ : Q× Γ −→ Q× Γ × {L, R}

The meaning of δ(p, a) = (q, b, d) is when in state p scanning symbol a, write b on that tape
cell, move the head in direction d, and enter state q.

Restrictions:

∀p∃q. δ(p,�) = (q,�, R) never moves off to the left of �
δ(t,−) = (t,−,−) and δ(r,−) = (r,−,−) never leave the accept (reject) state

The Turing machine accepts its input by entering a special accept state t and rejects by entering
a special reject state r. On some inputs it may run infinitely (loop on) without ever accepting or
rejecting.

A configuration is a tuple in Q × {w �ω | w ∈ Σ∗} × N and denotes a global state of the
machine. The configuration α = (p, z, n) specifies a current state p of the finite control, current
tape contents z, and current position of the read/write head (n ≥ 0). Ex. the initial configuration
on input x ∈ Σ∗: (s,�x�ω, 0).

The transition relation:

(p, z, n) → {(q, z[b/n], n− 1) ⇐ δ(p, zn) = (q, b, L)

(q, z[b/n], n+ 1) ⇐ δ(p, zn) = (q, b, R)

7



Example: {anbncn | n ≥ 0}

• Start in state s and scans to the right over the input string to check that it is of the form
a∗b∗c∗.

• Does not write anything on the way across (formally, it writes the same symbol it reads).

• When founding the first blank symbol �, it overwrites it with a right endmarker �

• Then it scans left, erasing the first c it sees, then the first b it sees, then the first a it sees,
until it comes to �.

• Then scans right, erasing one a, one b, and one c.

• It continues to sweep left and right over the input, erasing one occurrence of each letter
in each pass. If on some pass it sees at least one occurrence of one of the letters and no
occurrences of another, it rejects. Otherwise, it eventually erases all the letters and makes
one pass between � and � seeing only blanks, at which point it accepts.

Example: {ww | w ∈ {a, b}∗}

• In a first phase, scans out the input to the first blank symbol, counting the number of
symbols mod 2 to make sure the input is of even length and rejecting immediately if not.

• It lays down a right endmarker �, then repeatedly scans back and forth over the input.

• In each pass from right to left, it marks the first unmarked a or b it sees with an overline.

• In each pass from left to right, it marks the first unmarked a or b it sees with an underline.

• It continues this until all symbols are marked. The objective is to find the center of the
input string.

� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
� aabbaaabba � � � · · ·
· · ·
� aabbaaabba � � � · · ·

In a second phase, repeatedly scans left to right over the input.

• In each pass it erases the first symbol it sees marked with underline but remembers that
symbol in its finite control.

8



• It then scans forward until it sees the first symbol marked with overline, checks that that
symbol is the same, and erases it.

• If the two symbols are not the same, it rejects. Otherwise, when it has erased all the
symbols, it accepts.

� aabbaaabba � � � · · ·
� �abba � abba � � � · · ·
� � � bba � �bba � � � · · ·
· · ·
� � � � � a � � � �a � � � · · ·
� � � � � � � � � � � � � � · · ·

Exercise 1

Specify a total TM that accepts its input string if its length is prime.

Hint. Give an implementation of the Sieve of Eratosthenes. To check whether n is prime, start writing
down all the numbers from 2 to n in order. Then repeat: find the smallest number in the list, declare it
prime, then cross off all multiples of that number. Repeat until each number in the list has been either
declared prime or crossed off as a multiple of a smaller prime.

A Turing Machine is total if it halts (either by accepting or rejecting) in all inputs.

A language is

• recursively enumerable if it is the language L(M) recognised by some Turing MachineM,
i.e. {

M halts ⇐ w ∈ L
M halts in the non-acceptance state or loops forever ⇐ w /∈ L

• co-recursively enumerable if its complement is recursively enumerable;

• recursive if it is the language L(M) recognised by some total Turing MachineM, i.e.{
M halts in the acceptance state ⇐ w ∈ L
M halts in the rejectionstate ⇐ w /∈ L

A property φ (over strings) is

• decidable if the set of all strings exhibiting φ is recursive

• semidecidable if the set of all strings exhibiting φ is recursively enumerable

9



Exercise 2

Given a decidable property, what is the corresponding recursive set? Conversely, which decidable property
corresponds to a given recursive set?

Universal Turing Machines.

Turing machines are not restricted to do just a single computational task but can be programmed
to do many different ones. Actually a Turing machine can simulate other Turing machines whose
descriptions are presented as part of the input.

The key issue is to fix a reasonable encoding scheme for Turing machines over the alphabet
{0, 1}, e.g.

0n10m10k10s10t10u10v1,

and then construct U such that

L(U) = {M#s | s ∈ L(M)}

If the encodings ofM and s are valid, U makes a step-by-step simulation of machineM.

We may then discuss the expressive power and limitations of Turing machines using no other
instruments other than the machines themselves. It is precisely this self-referential property
that Gödel exploited to embed statements about arithmetics in statements of arithmetics in his
Incompleteness Theorem. The embedding in the Theorem is the same as the encoding of Turing
machines into input forms acceptable for universal machines and is achieved by converting the
finite description of a Turing machine into a unique non-negative integer. The conversion is
possible as we are only dealing here with machines having a finite number of states, a finite
number of symbols in its alphabet, and only a finite number of movements for their heads.

3 Recursive functions

Alternative approach to computability, focussed on what is computed rather than on an explicit
model of computation.

• k-ary zero functions: z(n1, · · · , nk) = 0

• k-ary, j-projection functions: idk, j(n1, · · · , nk) = nj
• the successor function: s(n) = n+ 1

• function composition of a k-ary function g with k m-ary functions hi:

f(n1, · · · , nm) = g(h1(n1, · · · , nm), h2(n1, · · · , nm), · · · , hk(n1, · · · , nm))

10



• recursive definition by a k-ary g and a k+ 2-ary h function:

f(n1, · · · , nk, 0) = g(n1, · · · , nk)
f(n1, · · · , nk,m+ 1) = h(n1, · · · , nk,m, f(n1, · · · , nk,m))

Exercise 3

Show that if f : N2 −→ N is primitive recursive, so is function

sumf(n,m) =
∑

i∈{0,1,··· ,m}

f(n, i)

Exercise 4

Show that the set of primitive recursive functions is countable. Use this fact to prove that most func-
tions in N are not primitive recursive, and therefore, according to Church thesis, uncomputable.

Exercise 5

Show that the factorial function, the function that computes the greatest common divisor and the prime
predicate (which returns 1 if its argument is a prime number) are all primitive recursive functions.

µ-recursive functions

Let p be a k+ 1-ary function and define the following unbounded iteration scheme:

µm[p(n1, · · · , nk,m) = 1] =

{
the leastm such thatp(n1, · · · , nk,m) = 1 ⇐ such am exists
0 ⇐ otherwise

The obvious way to compute this function is through unbounded iteration, i.e. through a while
loop:

11



m := 0;
while p(n1, · · · , nk,m) 6= 1 do
m :=m+ 1

end
returnm

This, however, may fail to terminate. We call function p minimalizable if the minimization
scheme above terminates for every input.

Functions defined by the basic functions above, composition, recursion and minimization are
called µ-recursive.

Example

Consider function log(b, n) standing for the logarithm of n+ 1 over base b+ 2. Formally,

log(b, n) = µm[geq(b+ 2)
m, n+ 1)]

Exercise 6

Why are we using b+ 2 and n+ 1 above? Show that the minimization algorithm terminates, i.e. function

f(b, n,m) = geq((b+ 2)m, n+ 1)

is minimizable.

Theorem

A function f : Nn −→ N is µ-recursive iff it is recursive, i.e. computable by a Turing machine.

Exercise 7

Suppose that g is a µ-recursive bijection over N. Show that its inverse g−1 is µ-recursive as well.

12



4 Undecidability

Our quest for a precise notion of an algorithm is concluded with the identification

Algorithm ≡ a Turing machine that halts on all inputs

This, however, opens the possibility of formally showing that there are some computational
problems which cannot be solved by any algorithm.

Turing machines (like other formalisms such as finite or push-down automata, regular, context-
free or unrestricted grammars) can be represented by sequences of symbols (cf, the discussion
on universal Turing machines). As there is only a countable number of languages defined over
an alphabet, the number of languages specified by Turing machines (cf, recursive and recursive
enumerable languages) is also countable. Turing machines decide or semidecide on an infinitesi-
mal fraction of all possible languages. According to the Church-Turing thesis, we have reached a
fundamental limitation: computational tasks that cannot be performed by a Turing machine are
undecidable.

The halting problem

Suppose one can write an algorithm dec(p, x) which receives a program p and a value x as input
and decides whether it terminates or not. Such a wonderful program could be used to write the
following procedure:

Algorithm 1: DecideHalt.
1 if dec(P,P) then

go to 1;
else

halt;
end

Exercise 8

Explain why dec(p, x) cannot exist and conclude that no algorithm to decide whether an arbitrary program
would halt or loop does not exist.

We have now a formalised notion of an algorithm and a sort of universal programming language
– the Turing machine – in which to define a language which is not recursive.

Y = {"Mw" | Turing machineM halts on input x}

Clearly, Y is recursively enumerable: it is the language recognised by an universal Turing ma-
chine. Such a machine halts exactly when its input is in Y.

13



Suppose that Y is decidable by some machine N. Then, given a particular Turing machine M
semideciding language L(M), one could design another machine that actually decides L(M) by
writing "M" "w" in its input tape and then simulating N on this input. If such is the case, every
recursive language would be recursively enumerable.

However, Y is not recursive. Actually, if it were recursive, language

Z = {"M" | Turing machineM halts on input "M"}

would also be recursive (cf. put "M" "M" on the tape of a new machine and hand control to N).
As it can be proved that recursive languages are closed for complemente, it suffices to show that
the complement of Z is not recursive.

Z = {w | Ψ(w)}

where Ψ(w) = w is not encoding of a Turing machine, or it is the encoding of a Turing
machineM that does not halt on "M".

Z, finally, is not recursively enumerable, let alone recursive, Suppose that there exists a machine
K semideciding Z. Is "K" in Z?

• "K" ∈ Z iff K does not accept input "K";

• but, K is supposed to semidecide Y; so "K" ∈ Z iff K accepts input "K".

Thus, we get an example of a non recursive language and proved an important theorem: the set
of recursive languages is a strict subset of the set of recursive enumerable functions.

The Halting problem: there is no algorithm that decides, for an arbitrary Turing machineM and
input w, whether or notM accepts w.

Other undecidable problems for Turing machines:

• doesM halt on the empty tape?

• is there any string at all on whichM halts?

• doesM halts on every input?

• given two Turing machines, do they halt on the same input?

• doesM fails to halt on input w?

Other problems can be reduced to one of these (e.g. the tiling problem).

References.
Both the textbook of H. Lewis and D. Papadimitriou [12] or the lecture notes by D. Kozen [11]
provide excellent introductions to computability and the (classical) theory of computation. A
quite interesting book by N. Yanofsky [17] may help to build up the correct intuitions which
often is as important as mastering the technicalities. As a side reading on Gödel’s incomplete-
ness theorem and connections to computability I suggest reference [3]. A. Hodges biography
of Alan Turing [10] makes a most pleasant weekend reading (see also the book website at
www.turing.org.uk).

14



Lecture 3: Computational complexity

Summary.
(1) Notion of growth rate of a function. Examples.

(2) Case study: closure operations.

(3) Computational complexity. The class P of polynomial decidable languages. P 6= NP?

1 Analysis of algorithms

Growth rate.

Example: transitive closure of R ⊆ A2

from ‘above’ R∗ is the smallest relations containing R that is transitive and reflexive.

from ‘below’

R∗ = {(a, b) | a, b ∈ A there exists a path from a to b in R}

which suggests an algorithm:

Algorithm 2: TC1.
R∗ := ∅;
for i := 1..n do

for each i-tuple (b1, · · · , bi) ∈ Ai do
if it is a path then
R∗ := R∗ ∪ {b1, bi}

end
end

One may inquiry this algorithm on

• correctness vs termination

• ... but when?

Growth rate for functions

O(f) = {g ∈ NN | ∃c,d∈N+. ∀n. g(n) ≤ c.f(n) + d}

15



Exercise 9

Define f ∼ g iff f ∈ O(g)∧ g ∈ O(f). Prove ∼ is an equivalence relation.

Example: p(n) = 31n2 + 17n+ 3

Clearly p(n) ≤ 48n2 + 3, because n2 ≥ n. Thus f ∈ O(−2) with constants 48 and 3.
However, −2 ∈ O(p) with constants 1 and 0.

Theorem

For any polynomial p(n) = cknk+ · · ·+ c1n+ c0, p ∈ O(−k) with constants
∑

1≤i≤k ci and c0.

Theorem

Any two polynomials p and q with the same degree verify p ∼ q.

Theorem

The growth rate of function 2n is higher than the one of an arbitrary polynomial.

Proof.
We want to show that

ni ∈ O(2n) i.e. ni ≤ c2n + d (1)

Let c = (2i)i and d = (i2)i, and consider two cases:

• n ≤ i2 ⇒ (1), because ni ≤ d

• n > i2 ⇒ (1), because ni ≤ c2n

Note that ni ≤ (iq+i)i = ii(q+1)i, for q the integer quotient of n by i (i.e. iq ≤ n ≤ i(q+1)).
Now,

ii(q+ 1)i

≤ { n ≤ 2n}

ii(2q+1)i

≤ { definition of c}

c2qi

≤ { definition of q}

c2n

Observe now that if a polynomial had the same growth rate than −2, then any polynomial of a
higher degree would have the same rate (because we’ve just proved that no polynomial grows as
fast as −2). But this leads to a contradiction.

�

16



2 Case study: Closure algorithms

Computing R∗.

Transitive closure (TC1)

The algorithm examines each sequence (b1, · · · , bi); if this is a path add to the solution. Thus,
the total number of operations is

n(1+ n+ n2 + · · ·+ nn)

Therefore, TC1 ∈ O(nn+1).

Transitive closure (TC2)

Algorithm 3: TC2.
R∗ := R ∪ {(a, a) | a ∈ A};
while ∃a1,aj,ak∈A. (ai, aj), (aj, ak) ∈ R, (ai, ak) /∈ R do
R∗ := R∗ ∪ {(ai, ak)}

end

• In each iteration one pair (if any) is added. Thus, (TC2) makes n2 iterations maximum.

• In each iteration the algorithm searches for n3 triples.

Therefore, TC2 ∈ O(n2 × n3) = O(n5).

Exercise 10

Obtain a better algorithm of O(n2 × n) = O(n3) by imposing an order to the triples so that a new
pair added does not violate the transitivity condition established for triples already considered.

Closure problems.

A subset C ⊆ A is closed for a relation R ⊆ An+1 if

bn+1 ∈ C ⇐ b1, · · · , bn ∈ C ∧ (b1, · · · , bn, bn + 1) ∈ R

e.g.

17



• N is closed for +

• the set of ancestors is closed for the relation parent-of

• any set is closed for ⊆

Closure property: The set C is closed under relations R1, · · · , Rm
cf, the usual construction the smallest set that contains A and has property φ. But note that not
all properties guarantees the existence of a smallest set satisfying φ. However,

Theorem

If φ is a closure property in A and B ⊆ A, then there exists the smallest set C st B ⊆ C and C is
closed for φ.

Proof.
Let φ be defined by a realtion R and S denote the set of subsets of A containing B and closed for
R. Clearly S 6= ∅ (why?). Then,

• A ⊆ C

• C is closed for R. Let a1, · · · , an−1 ∈ C and (a1, · · · , an−1, an) ∈ R. All sets in S contain
a1, · · · , an−1 and because all of them are closed, all have an. Thus, an ∈ C.

• C is minimal: no strict subset C ′ of C exists (otherwise C ′ ∈ S).

�

Theorem

Any closure property over a finite set can be computed in polynomial time.

Proof.

Algorithm 4: Computing a generic closure.
C◦ := C;
while ∃1≤i≤k and ri elements aj1 · · ·ajri−1

∈ C◦ and ajri
∈ D \ C◦ . (aj1 · · ·ajri ) ∈ Ri do

C◦ := C◦ ∪ {ajri }

end

Thus, the algorithm is O(nr+1) where n is the cardinal of D and r is the greatest arity of all
relations considered.

�

Theorem

Any algorithm in polynomial time can be rendered as the computation of a closure over a set for
a set of relations.

18



3 Computability vs complexity

The Travelling Salesman Problem.

Given a map with n cities and distances in Km, produce an itinerary that minimizes the total
distance travelled.

• Clearly solvable (e.g. systematic examination of all itineraries)

• but unsolvable in any practical sense by current computers: too many itineraries ((n− 1)!)
to be explored. Notice that a (n− 1)! algorithm goes faster that 2n.

What is a practically feasible algorithm?

... should run for a number of steps bounded by a polynomial in the length of the input.

Polynomially decidable languages.

A language is polynomially decidable if there is a polynomially bounded Turing machine that de-
cides it, i.e. a Turing machine which always halts after at most p(n), where p(n) is a polynomial
and n is the length of the input.

The class P of such languages is the quantitative analog of the class of recursive languages. As
the latter it is closed under complement, union, intersection, concatenations and Kleene star. But,
on the other hand, not all recursive languages are polynomially decidable.

Theorem

S /∈ P, where
S = {"M" "w" |M accepts input w after at most 2|w| steps}

Proof.

If S ∈ P, language

S ′ = {"M" |M accepts input "M" after at most 2|"M"| steps}

and its complement are also in P. This means that there exists a polynomially bounded Tur-
ing machine B which accepts all descriptions of Turing machines that fail to accept their own
description in 2n steps, where n is the length of the description, and halts in p(n) steps for a
polynomial p(n).

Does B accept its own description "B"?

• If YES then B fails to accept "B" within 2|"B"| steps. However, B halts in |"B"| steps, i.e.
much before 2|"B"|. Thus it should reject "B", which leads to a contradiction. Note that there
is always an integer n0 such that p(n) ≤ 2n for all n ≥ n0, and we may safely assume
|"B"| ≥ n0.

19



• If NO a similar argument also leads to contradiction.

Problems.

Reachability. Given two nodes of a finite graph decide if there is a path connecting them.

Is a variant of the reflexive-transitive closure problem. Can be solved by computing this
closure in time O(n3) and inspect the result.

A problem is a set of inputs, typically infinite, with a Boolean question to be asked of each input.
A problem needs to be encoded as a language problem so that its complexity can be analysed in
a common setting. For example, the Reachability problem can be reduced to a decision problem
for the language

R = {K(G)s(i)s(j) | there is a path in G connecting nodes ni to nj}

where K and s are suitable binary encoding functions for graphs and integers.

Other problems

Euler Cycle. Given a graph is there a closed path in it that uses each edge exactly once?

Note that the path can go many times through the same node (or even not at all if there
are isolated nodes). It can be proved that the necessary condition on a graph to have such
a path is that i) all nodes have equal numbers of incoming and outgoing edges, and ii) for
each pair of nodes, neither of which isolated, there is a path connecting them. So, clearly
the corresponding language

G = {K(G) | G has an Euler cycle}

where K(G) is some encoding of graphs as strings, is in n P.

Hamilton Cycle. Given a graph is there a cycle that passes through each node exactly once?

No polynomial algorithm is known. Of course the trivial one (generate all paths and
choose) is not polynomial.

Equivalence of Finite Automata. Given two deterministic automata, determine whether they
recognise the same language?

The problem is polynomial, as it is the variant in which only regular expressions are con-
sidered. However, one cannot conclude about the latter just by reducing to the former:
actually, the generation of a finite automaton from a regular expression may increase ex-
ponentially the number of states.

Integer Partition. Given a set of n nonnegative integers represented in binary, is there a subset
S of the original set such that

∑
i∈S ai =

∑
i 6∈S ai?

20



The algorithm is O(nV) where V is the sum of all numbers in the original set divided by
2. In spite of its polynomial appearance, the problem is not polynomial in the length of the
input. The reason is that the integers are encoded in binary: if all integers are about 2n,
then S is close to 2n × n

2
.

Satisfiability. Is a Boolean formula in conjunctive normal form satisfiable?

No polynomial algorithm is known. However, if reduced to formulas with a maximum of
two literals, it becomes polynomial.

Optimisation problems

Require to find the best among many possible solutions, according to some cost function. The
trick to transform optimisation into language problems is to fix each input with a bound on the
cost function. For example, the Traveling Salesman problem can be rephrased as

Given an integer n ≥ 2, a n× n distance matrix, and an integer b ≥ 0, find a permutation of n
such that its cost is less or equal to b (which, to build up intutition, may be regarded as a budget).

Independent Set. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set
of vertices with |s| ≥ K such that for any two vertices in s there is no edge connecting
them?

Clique. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of vertices
with |s| ≥ K such that for all vertices in s there is an edge connecting each pair?

Node Cover. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of
vertices with |s| ≤ K such that s covers all edges of the graph? (cf, minimising guards in a
museum).

Note that a set of nodes covers an edge if it contains at least one endpoint of the edge.

No polynomial algorithms are known.

The class NP.

Most interesting problems mentioned above for which no polynomial algorithm exists — Trav-
eling Salesman, Satisfiability, Independent Set, Integer Partition, etc., can be solved by polyno-
mially bounded nondeterministic Turing machines. All computations of such machines do not
continue for more than polynomially many steps.

This defines the class NP (of nondeterministic polynomial languages).

Although determinism and nondeterminism in the definition of Turing machines do not interfere
on their expressiveness in what concerns decidability, separating determinism form nondeter-
minism at the polynomial level (the P 6= NP conjecture), remains unsolved.

These problems share an important completeness property: All problems in NP can be reduced
to them (just as all recursively enumerable languages reducing to the halting problem). Such

21



problems are called NP-complete.

References.
My preference on complexity theory is Papadimitriou’s wonderful book [15]; reference [6] pro-
vides an interesting alternative. S. Arora and B. Barak book [2] is a more recent textbook cover-
ing recent achievements in complexity theory (including challenges from quantum computation)
and putting them in the context of the classical results. Worth reading.

22



Lecture 4: Introduction to Quantum Computing

Summary.
(1) Nondeterministic, probabilistic and quantum transition systems.

(2) Introduction to quantum computing. The circuit model. The Deutsch-Jozsa algorithm.

1 Transition systems

(... in dialogue with the ”Compilers and Language Processing” course unit ...)

Nondeterministic automata

1 // 2 3

��

5

@@

// 6

OO

4

• The states of a system correspond to column vectors;

• The automata dynamics is encoded in Boolean matrices: M[i, j] = 1 if and only if there is
an edge (path of length 1) from vertex j to vertex i;

• Multiplying the current state vector by matrixM yields progress from one state to another
in one time step;

• Multiple step dynamics are obtained via matrix multiplication.

Probabilistic automata

11
2 99

1
6

++

1
3

��

0
1
3

kk

2
3

��

2

1
6

]]

5
6

AA

• The vectors that represent states of a probabilistic physical system express indeterminacy
about the exact physical state of the system;

• The matrices that represent the dynamics express indeterminacy about the way the physical
system will change over time;

23



• The entries of the evolution matrix enable the computation of the likelihood of transitioning
from one state to the next: M[i, j] gives the probability of a transition from vertex j to vertex
i;

• Typically, but not necessarily, matrices encoding automata dynamics are double stochastic,
which encodes the following two conditions:

– the sum of all the weights leaving a vertex is 1 and

– the sum of all the weights entering a vertex is 1.

i.e. the dynamics is time symmetric.

• The way in which the indeterminacy progresses is simulated by matrix multiplication.

Quantum automata

01√
2 99

−ι√
2

++ 1
1√
2

kk
ι√
2

yy

2ι 99

• States in a quantum automaton are represented by column vectors of complex numbers
whose sum of moduli squared is 1.

• The dynamics is represented by unitary matrices and is therefore reversible. M† takes a
state from time t to t−1. Note that the modulus squared of a unitary matrix forms a doubly
stochastic matrix. Actually, the probabilities of quantum mechanics are always given as
the modulus square of complex numbers.

• The weights on a quantum automaton are complex numbers whose modulus square is
a real number between 0 and 1. Actually, if real number probabilities can only increase
when added, complex numbers can cancel each other and lower their probability (therefore
capturing interference): |c0 + c2|2 need not be bigger than |c0|

2 or |c0|2.

• Quantum states can be superposed, i.e. a physical system can be in more than one basic
state simultaneously.

Exercise 11

Show that a unitary matrix preserves the sum of the modulus squares of a column vector multiplied on its
right.

24



2 Design of quantum algorithms.

The setting: computing with a quantum device.

Data

The qubit provides the elementary assembly block in the quantum world. Formally,[
c0
c1

]
such that |c20| + |c21| = 1. Complex c0 is to be interpreted as the probability that after measuring
the qubit, it will be found in state |0〉.

In general, the state of a closed physical system is wholly described by a vector of complex
numbers

S =

s0...
sn


such that |s20|+ |s21|+ · · ·+ |s2n| = 1.

This condition is equivalent to S being unitary. Indeed,

|s20|+ |s21|+ · · ·+ |s2n| = 1⇔ { z∗z = |z|2, for any complex number z}

s∗0s0 + s
∗
1s1 + · · ·+ s∗nsn = 1⇔ { matrix multiplication}

[s∗0, s
∗
1, · · · s∗n] ·


s0
s1
...
sn

 = 1

⇔ { transpose}
s∗0
s∗1
...
s∗n


T

·


s0
s1
...
sn

 = 1

⇔ { definition of †}
s0
s1
...
sn


†

·


s0
s1
...
sn

 = I1

25



The number of components in the vector provide a measure of the system’s complexity (its
degrees of freedom or dimension).

Computation

• The algorithm is initialised by preparing a particular classical state;

• From there the system is put into a superposition of many states:

• ... which is transformed through the application of a several reversible operations (en-
coded as unitary matrices)

• A measurement is performed.

When a physical system is measured, it collapses to (a classical) state with probability
pi = |s2i |: 

s∗0
...
s∗i
...
s∗n


|s2i |−→


0
...
1
...
0


with probability pi = |s2i |. Of course, qubits collapse into classical bits:

[c0, c1]
T

|c0|
2

xx

|c1|
2

&&

|0〉 = [1, 0]T |1〉 = [0, 1]T

26



3 The Deutsch-Jozsa algorithm

Problem (simplified version)

Decide whether a function f : 2 −→ 2 is constant with a unique evaluation of f.

Build a gate:

Evaluating a function f is equivalent to multiply a state through a matrix somehow encoding

f. For exemple, if f(x) = ¬x, multiplying state |0〉 by
[
0 1

1 0

]
results in state |1〉. However,

in quantum computing every gate must be unitary, and thus reversible. So, for the sake of this
problem, we’ll encode a generic function f : 2 −→ 2 in gate

|x〉 |x〉
Uf

|y〉 |y⊕ f(x)〉

where ⊕ stands for exclusive disjunction. The first qubit |x〉 is the value that one wishes to
evaluate; the second one is used for control. This gate takes input |x, y〉 to |x, y ⊕ f(x)〉 (for
y = 0 the output is |x, f(x)〉).

Exercise 12

Give Uf for f the negation operator.

Exercise 13

Show Uf is a valid gate (i.e. a unitarian matrix).

27



Attempt 1

Explore superposition (resorting to the Hadamard gate).

|0〉 H ·
Uf

|0〉 · · ©

Uf(H⊗ I)(|0〉 ⊗ |0〉)

|σ1〉 = (H⊗ I)(|0〉 ⊗ |0〉) = (H⊗ I)|0, 0〉 = |H|0〉, 0〉 =
|0〉+ |1〉√

2
|0〉 =

|0, 0〉+ |1, 0〉√
2

=


1√
2

0
1√
2

0


|σ2〉 = Uf|σ1〉 = |H|0〉, 0〉 = Uf(

|0, 0〉+ |1, 0〉√
2

) =
|0, f(0)〉+ |1, f(1)〉√

2

Unfortunately the problem was not solved: for f(x) = ¬x, we get

|σ2〉 =
|0, 1〉+ |1, 0〉√

2
=


0
1√
2
1√
2

0


Measuring the second qubit the probability of it being in |0〉 (respectively, |1〉) is 50% (respec-
tively, 50%). A similar conclusion arises for the first qubit.

28



Attempt 2

Keep the first qubit as given and lift the second one to a superposition state, i.e.

|x〉 · ·
Uf

|1〉 H · ©

Uf(I⊗H)(|x〉 ⊗ |1〉)

|σ1〉 = |x〉 ⊗ |0〉− |1〉√
2

=
|x, 0〉− |x, 1〉√

2

|σ2〉 = Uf|σ1〉 = |x〉 |0⊕ f(x)〉− |1⊕ f(x)〉√
2

=

{
|x〉 |0〉−|1〉√

2
⇐ f(x) = 0

|x〉 |1〉−|0〉√
2

⇐ f(x) = 1

= (−1)f(x) |x〉 |0〉− |1〉√
2

Again, the exercise failed: no significative information can be retrieved from any of the qubits.

29



Attempt 3

Put both entries in superposition and compose the output again with a Hadamard gate.

|0〉 H H ©
Uf

|1〉 H ·

(H⊗ I)Uf (H⊗H)(|0〉 ⊗ |1〉)

|σ1〉 =
|0〉+ |1〉√

2

|0〉− |1〉√
2

=
|0, 0〉− |0, 1〉+ |1, 0〉− |1, 1〉

2
=


1
2

− 1
2
1
2

− 1
2


|σ2〉 =

(
(−1)f(0)|0〉+ (−1)f(1)|1〉√

2

) (
|0〉+ |1〉√

2

)

=

(+1)
(

|0〉+|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f constant

(+1)
(

|0〉−|1〉√
2

) (
|0〉−|1〉√

2

) ⇐ f not constant

|σ3〉 = H|σ2〉

=

(+1) |0〉
(

|0〉−|1〉√
2

) ⇐ f constant

(+1) |1〉
(

|0〉−|1〉√
2

) ⇐ f not constant

To answer the original problem is now enough to measure the first qubit: f is constant if it is in
state |0〉.

Exercise 14

If f is constant we will measure |0〉 regardless if the state was −|0〉 or |0〉. Which information is dis-
carded in this process?

Note: Observe the role of the Hadamard gates in first changing the basis of the first qubit to a su-
perposition (in which the function is evaluated with the second qubit in a superposition as well),
and later to revert back to the canonical basis.

30



The Deutsch-Jozsa algorithm

Problem: Decide whether a function f : 2n −→ 2 (of which we are assured to be constant or
balanced, i.e. mapping exactly half of the inputs to 0) is constant with a unique evaluation of f.

The previous simplified solution is the n = 1 instance of the general one.

Classically, the problem is solved by evaluating the function on different inputs: 2 in the best case
(when two evaluations return different results), or 2n−1 + 1 in the worst. The quantum solution
brings an exponential speedup.

References.
References [14, 18, 19] will support your study of quantum computation along this course.

To close this module, a note on quantum computation and computability is in order. The physical
variant of the Church-Turing thesis states that any function that can be computed by a physical
system can be computed by a Turing Machine. It is therefore a strong statement of belief about
the limits of both physics and computation. Whether, however, quantum computation will bring
us beyond the classical computability framework is still not completely settled.

Most researchers agree that the shift from classical to quantum computers challenges the notion
of complexity: some functions can be computed faster on a quantum computer than on a classi-
cal one. But, it does not challenge the physical Church-Turing thesis itself: a quantum computer
can always be simulated by pen and paper, and thus, what it computes can be computed clas-
sically. David Deutsch original paper [5], which introduced quantum Turing machines, goes in
this direction and is worth reading. You may refer to [7] for a more resent perspective.

For quantum complexity, I suggest S. Aaronson lecture notes [1], even if the stuff is a bit technical
and clearly out of the scope of this course unit.

31



References

[1] S. Aaronson. The complexity of quantum states and transformations: From quantum money
to black holes. CoRR (Lecture Notes for the McGill Invitational Workshop on Computa-
tional Complexity, Bellairs Institute, Holetown, Barbados), abs/1607.05256, 2016.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

[3] M. Baaz, C. H. Papadimitriou, H. W. Putman, D. S. Scott, and C. L. Harper. Kurt Godel
and the Foundations of Mathematics. Cambridge University Press, 2011.

[4] D. A. Davey and H. A. Priestley. Introduction to lattices and Order (Second Edition).
Cambridge University Press, 2002.

[5] D. Deutsch. Quantum theory, the church-turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London A, 400:97–117, 1985.

[6] D. Z. Du and K. I. Ko. Theory of Computational Complexity. Addison-Wesley, 2000.

[7] Stefano Guerrini, Simone Martini, and Andrea Masini. Towards A theory of quantum
computability. CoRR, abs/1504.02817, 2015.

[8] P. Halmos. Naive Set Theory. Springer (Undergraduate texts in Mathematics), 1974.

[9] P. Halmos and S. Givant. Logic as Algebra. The Mathematical Association of America
(Dolciani Mathematical Expositions, 21), 1998.

[10] A. Hodges. Alan Turing, the Enigma. Princeton University Press, 1983.

[11] D. C. Kozen. Automata and Computability. Springer, 1999.

[12] H. R. Lewis and C. H. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall (2nd Edition), 1997.

[13] S. Mac Lane and G. Birkhoff. Algebra (Third Edition). Cambridge University Press, 1988.

[14] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information (10th
Anniversary Edition). Cambridge University Press, 2010.

[15] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[16] A. Tarski. A lattice–theoretic fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285–309, 1955.

[17] N. S. Yanofsky. The Outer Limits of Reason. MIT Press, 2013.

[18] N. S. Yanofsky and M. A. Mannucc. Quantum Computing for Computer Scientists. Cam-
bridge University Press, 2008.

[19] M. Ying. Foundations of Quantum Programming. Elsevier, 2016.

32


