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Computing: A quantum machine

States: Given a set of possible configurations, states are unit vectors of
(complex) amplitudes in C"

Operator: Unitary matrix (MM = I). The norm squared of a unitary
matrix forms a double stochastic one.

Evolution: Computed through matrix multiplication with a vector |u) of
current amplitudes (wave function)

e M|u) (next state)

e |u)TMT (previous state)

Measurement: Configuration i is observed with probability || & ||? if found
in i, the new state will be a vector |t) st t; =0 ;

Composition: By a tensor ® (Kronecker product) on the complex vector
space; may exist entangled states
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Computing: Algorithms

Quantum algorithms

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)

What's next?

1. Study a number of algorithmic techniques

2. and their application to the development of quantum algorithms
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The Deutsch problem (from Lecture 1)

‘ Is f : 2 — 2 constant, with a unique evaluation? ‘

Oracle

) )

» Us e fx)

where @ stands for exclusive or, i.e. addition module 2.

e The oracle takes input [x)|y) to [x)ly @ f(x))
e Fixing y = 0 the output is [x)|f(x))
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Is the oracle a quantum gate?

First of all, one must prove that
e The oracle is a unitary, i.e. reversible gate

|x) |x) |x)

Uy Uy

) ly® f(x))

Oy & f(x)) @ f(x) = Ixly & (fx) @ f(x))) = Xy ®0) = [x)ly)
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The Deutsch problem (from Lecture 1)

Take the first qubit |x) as the (quantum version of) input x:

0}l0) — 10)I£(0))
11)|0) = [D)IF(1))

But in the quantum world, one can better: input a superposition of |0)
and |1) to get

1 1
(f|o>+ﬁ|1>) 0) = -10)10) +

[110) = -

S
S
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The Deutsch problem (from Lecture 1)

1 1 1
Us <|o> 0+ |o>) — U0 + -
1 1

1 1
= ZOIF0) + —ZI)if1)

Url1)/0)

N
<=

e The value of f on both possible inputs (0 and 1) was computed
simultaneously in superposition

e Double evaluation — the bottleneck in a classical solution — was
avoided by superposition
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Is such quantum parallelism useful? (from Lecture 1)

NO

Although both values have been computed simultaneously, only one of
them is retrieved upon measurement in the computational basis:
Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may
take, but on a global property of f: whether it is constant or not,
technically on the value of

f(0)® f(1)

The Deutsch algorithm explores another quantum resource —
interference — to obtain that global information on f
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Deutsch algorithm (from Lecture 1)

Idea: Avoid double evaluation by superposition and interference

0)
H U; H

lbo)  [¢) [%2)  |s)

The circuit computes:

) = 0) +11) [0) —[1) _ [00) —[01) +10) —[11)
' V2 V2 2
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Deutsch algorithm (from Lecture 1)

After the oracle, at 1\, one obtains

o0 FE0) e FO) )OI f(x) =0
) V2 TR e =1
pyii 0 =)
= (=1)""Ix) 2

For |x) a superposition:

by = ((—1)f(°)l0>\2(—1)””|1>) <|0>\21>>

(+1) SIRAE R QR & f constant

(+1) 10)—11) 10)—11) & f not constant
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Deutsch algorithm (from Lecture 1)

Wb3) = Hhb2)
(+1)10) % & f constant
B (+1)11) % & f not constant

To answer the original problem is now enough to measure the first qubit:
if it is in state |0), then f is constant.

Note
As the initial state in the second qubit can be prepared as H|1), the
circuit is equivalent to

(H® 1) Ur (H® H)(/01))
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Recalling the CNOT gate

CNOT
——
I
{0 X} corresponds to the oracle: [xy) — |x,x ® y)
CNOTI0)l@) = 10)/l¢)
CNOTL)le) = [1)Xle)

Recall its effect when applied in the Hadamard basis, e.g.

(%52) (52)- (%) ()

The phase jumps, or is kicked back, from the second to the first qubit.
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The phase ‘kick back’ technique

This happens because % is an eigenvector of

o X (with A =—1) and of / (with A =1)

0y—[1) 10)—I1) 0)—]1) _ 110)—
e and, thus, X 7 =-1 7 and / 7 =1 7

Thus,

CNOT 1) <|0>}2|1>> _ (x (|0>\—@|1>

I
1
.
~
—
L2
S|
=
N———

while CNOT |0) ('°>}2'1>) = 10) (\0>\}2\1>)
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The phase ‘kick back’ technique

The phase has been kicked back to the first (control) qubit:

enor iy (P28} = (i (92

for i € {0, 1}, yielding, when the first (control) qubit is in a superposition
of [0) and [1),

enor (a0} + i) (L) — (aio)-piwy) (21

The phase ‘kick back’ technique

Input an eigenvector to the target qubit of operator Uf(x], and
associate the eigenvalue with the state of the control qubit
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Phase ‘kick back’ in the Deutsch algorithm

Instead of CNOT, an oracle Ur for an arbitrary Boolean ﬂmction
f:2 — 2, presented as a controlled-gate, i.e. a 1-gate Uy () acting on
the second qubit and controlled by the state |x) of the first one, mapping

ly) = ly®f(x))

&) — }— ) ) @ |a)
Uf — —
W — e f@) 1) T py— 1v© F(2))

—|1) . . 7
72 IS an eigenvector of Uf(x)
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Phase ‘kick back’ in the Deutsch algorithm

Ur 1X)1=) = 1x) Up =)
(X Uf(x) 10) — |x) Uf(x) 1)
B V2
B (|x>|oeaf(x)>—|x>|1eaf(x)>>
- V2
- 0 f(x)) =16 f(x))
= k) ( 2 >

= |x)(—1)" (|0>\/§|1>) = ) (1) )

Thus, when the control qubit is in a superposition of |0) and |1),

U a0} + 1)) (22 ) = (1) + (-1 B -
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Generalizing Deutsch ...
Generalizing Deutsch’s algorithm to functions whose domain is an

initial segment N = 2" of N encoded into a binary string

i.e. the set of natural numbers from 0 to 2" — 1

The Deutsch-Jozsa problem

Assuming f : 2" — 2 is either balanced or constant, determine
which is the case with a unique evaluation

The oracle

[x) [x)
. n
Uy

[f(x)® y)
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Generalizing Deutsch ...
The Deutsch circuit

o

10)—[1) 77
» Ut
The Deutsch-Joza circuit

0 —{H| —H]

0 —H] alél
0)—[1) -
7 Useo|

[Po)  [vn) [a)  [t3)

The Deutsch-Jozsa algorithm
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The Deutsch-Jozsa Algorithm

The crucial step is to compute H®" over n qubits:

H®"0) "

1 n
(\@) (10) +11)) @ - @ ([0) + 1)

n

1
LYk

xe2"

Thus

o

|0>®n <0>\%|1>

¥y = \/127 Z ) <|O>\;§|l>>
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The Deutsch-Jozsa Algorithm

v Usx)

[Yo)  lvh1) [a)  |vs)

The phase kick-back effect

i \/127Uf (Z ) <|0>k|1>>>

Ll g (0=
e (90)
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The Deutsch-Jozsa Algorithm

Finally, we have to compute the last stage of H® application.

H|X> = %(|O> —+ (— — Z XZ‘Z

z€2

H®x) = H®(Ix1), -, Ixn))
= H‘X1>®"'®H|Xn>

(10) + (—1)8[1)) —=(0) + (—1)%[1)) --

V2
- Z (_1)><121+Xz22+~-+xnzn|Zl>|22> .

71222 €2

= — Y (1)

ze2"

(10) + (=1)*[1))

-5l
P

N
3
N

S
3

S
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The Deutsch-Jozsa Algorithm

Y e CDY o (1)*X]2) [0) —|1)
2n /2

_ Zx,ze2” (71)f(x)(71)z.x‘z> |0> B |1>
= > \/§

— Zx,z€2” (_1)f(X)+z.x|Z> |0> — |1>
= n \/§

Note that the amplitude for state |z) = |0) is

o Y (1)

hps) =
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The Deutsch-Jozsa Algorithm

Analysis
’ f is constant at 1 ‘ ~ *(2;)‘0) = —0)
[fis constant at 0] ~ 22 — o)

As |@3) has unit length, all other amplitudes must be 0 and the top
qubits collapse to |0)

f is balanced | ~~ 0|2?> = 0/0)

because half of the x will cancel the other half. The top qubits collapse
to some other basis state, as |0) has zero amplitude

‘The top qubits collapse to |0) iff f is constant
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Quantum Algorithms

The Deutsch-Jozsa algorithm: Lessons learnt

e Exponential speed up: f was evaluated once rather than 2" — 1
times

e The quantum state encoded global properties of function f

e ... that can be extracted by exploiting cleverly such non local
correlations.
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Quantum Algorithms

The Deutsch-Jozsa algorithm
Exponential speed up: f was evaluated once rather than 2" — 1 times

Classes of quantum algorithm
e Based on the quantum Fourier transform: The Deutsch-Jozsa is a
simple example; Phase estimation; Shor algorithm; etc.

e Based on amplitude amplification: Variants of Grover algorithm for
search processes.

e Quantum simulation.
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