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Background: Hilbert spaces State Evolution Composition

The principles

Quantum computation explores the laws of quantum theory as
computational resources.

Thus, the principles of the former are directly derived from the postulates
of the latter.

• The state space postulate

• The state evolution postulate

• The state composition postulate

• The state measurement postulate

The underlying maths is that of Hilbert spaces.
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The underlying maths: Hilbert spaces

Complex, inner-product vector space
A complex vector space with inner product which measures how much
two vectors overlap:

〈−|−〉 : H × H −→ C

such that

(1) 〈v |
∑
i

λi · |wi 〉〉 =
∑
i

λi 〈v |wi 〉

(2) 〈v |w〉 = 〈w |v〉
(3) 〈v |v〉 ≥ 0 (with equality iff |v〉 = 0)

Note: 〈−|−〉 is conjugate linear in the first argument:

〈
∑
i

λi · |wi 〉|v〉 =
∑
i

λi 〈wi |v〉

cinzaNotation: 〈v |w〉 ≡ (|v〉, |w〉)
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Dirac’s notation

Dirac’s bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space

|u〉 A ket stands for a vector in an Hilbert space H. In Cn, it
is a column vector of complex entries. Note that the
identity for + (the zero vector) is just written 0.

〈u| A bra is a vector in the dual space H∗, i.e. scalar-valued
linear maps in H. In (Cn)∗ it is the adjoint, i.e. the
conjugate transpose, of the corresponding ket, therefore a
row vector.

There is a bijective correspondence between |u〉 and 〈u|

|u〉 =

u1...
un

 ⇔ [
u1 · · · un

]
= 〈u|
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Inner product: examples

In C

〈a + bi |c + di〉 = (a − bi)(c + di) = ac + adi − bci + bd

In Cn: The dot product
Amost useful example of a inner product is the dot product

〈u|v〉 =
[
u1 u2 · · · un

]︸ ︷︷ ︸
〈u|


v1
v2
...
vn

 =

n∑
i=1

uivi

where c = a − ib is the complex conjugate of c = a + ib
.
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Old friends: The dual space

H∗

If H is a Hilbert space, H∗ is the space of linear maps from H to C.

Elements of H∗ are denoted by

〈u| : H −→ C and defined as 〈u|(|v〉) = 〈u|v〉

In a matricial representation 〈u| is obtained as the Hermitian conjugate
(i.e. the transpose of the vector composed by the complex conjugate of
each element) of |u〉, therefore the dot product of |u〉 and |v〉.
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Old friends: Norms and orthogonality

• The inner product measures the degree of overlapping: |v〉 and |w〉
are orthogonal if 〈v |w〉 = 0

• The ”length” of a vector uses the measure of its overlap with itself
to yield the (Euclidean) norm:

‖ |v〉‖=
√
〈v |v〉

(generalizing the distance between two points)

• |v〉 is a unit vector if ‖ |v〉‖= 1

• normalization: |v〉
‖|v〉‖

• A set of vectors {|i〉, |j〉, · · · , } is orthonormal if each |i〉 is a unit
vector and

〈i |j〉 = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0
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Old friends: Bases

Orthonormal basis
A orthonormal basis for a Hilbert space H of dimension n is a set
B = {|i〉 | i ∈ n − 1} of n linearly independent elements of H st

• 〈i |j〉 = δi,j for all |i〉, |j〉 ∈ B

• and B spans H, i.e. every |v〉 in H can be written as

|v〉 =
∑
i

αi |i〉 for some αi ∈ C

Note that the amplitude or coefficient of |v〉 wrt |i〉 satisfies

αi = 〈i |v〉

Why?
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Bases

αi = 〈i |v〉 because

〈i |v〉 = 〈i |
∑
j

αj j〉

=
∑
j

αj〈i |j〉

=
∑
j

αjδi,j

= αi

Note
If |v〉 is expressed wrt an orthonormal basis {|i〉 | i ∈ n}, i.e.
|v〉 =

∑
i αi |i〉, then

‖ |v〉‖ =
∑
i

‖αi ‖2
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Example: The Hadamard basis

One of the infinitely many orthonormal bases for a space of dimension 2:

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

|−〉 = 1√
2
|0〉− 1√

2
|1〉

Check, e. g.

〈+|−〉 =
1

2
(|0〉+ |1〉, |0〉− |1〉) =

1

2

([
1
1

]
,

[
1
−1

])
=

1

2

[
1 1

] [ 1
−1

]
= 0

‖ |+〉‖ =
√
〈+|+〉 =

√
1

2
(|0〉+ |1〉, |0〉+ |1〉) =

√
1

2

([
1
1

]
,

[
1
1

])
= 1
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Bases

A basis for H∗

If {|i〉 | i ∈ n} is an orthonormal basis for H, then

{〈i | | i ∈ n}

is an orthonormal basis for H∗.
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Hilbert spaces

The complete picture
An Hilbert space is an inner-product space H st the metric defined by its
norm turns H into a complete metric space, i.e.any Cauchy sequence

|v1〉, |v2〉, · · ·

∀ε>0 ∃N ∀m,n>N ‖ |vm − vn〉‖≤ ε

converges
(i.e. there exists an element |s〉 in H st ∀ε>0 ∃N ∀n>N ‖ |s − vn〉‖≤ ε )

The completeness condition is trivial in finite dimensional vector spaces
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The state space postulate

Postulate 1
The state space of a quantum system is described by a unit vector in a
Hilbert space

• In practice, with finite resources, one cannot distinguish between a
continuous state space from a discrete one with arbitrarily small
minimum spacing between adjacente locations.

• One may, then, restrict to finite-dimensional (complex) Hilbert
spaces.
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The state space postulate

A quantum (binary) state is represented as a superposition, i.e. a linear
combination of vectors |0〉 and |1〉 with complex coeficients:

|φ〉 = α|0〉+ β|1〉 =

[
α
β

]
When state |φ〉 is measured (i.e. observed) one of the two basic states
|0〉, |1〉 is returned with probability

‖α‖2 and ‖β‖2

respectively.
Being probabilities, the norm squared of coefficients must satisfy

‖α‖2 + ‖β‖2 = 1

which enforces quantum states to be represented by unit vectors.



Background: Hilbert spaces State Evolution Composition

The state space of a qubit

Global phase
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase factor e iθ, represent the same state.

Let
|v〉 = α|u〉+ β|u ′〉

‖e iθα‖2= (e iθα)(e iθα) = (e−iθα)(e iθα) = αα =‖α‖2

and similarly for β.

As the probabilities ‖α‖2 and ‖β‖2 are the only measurable quantities,
global phase has no physical meaning.

Representation redundancy

qubit state space 6= complex vector space used for representation
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The state space of a qubit

Relative phase
It is a measure of the angle between the two complex numbers.
Thus, it cannot be discarded!

Those are different states

1√
2
(|u〉+ |u ′〉) 1√

2
(|u〉− |u ′〉) 1√

2
(e iθ|u〉+ |u ′〉)

...
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The Bloch sphere

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])



Background: Hilbert spaces State Evolution Composition

The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• Express |ψ〉 in polar form

|ψ〉 = ρ1e iϕ1 |0〉+ ρ2e iϕ2 |1〉

• Eliminate one of the four real parameters multiplying by e−iϕ1

|ψ〉 = ρ1|0〉+ ρ2e i(ϕ2−ϕ1)|1〉 = ρ1|0〉+ ρ2e iϕ|1〉

making ϕ = ϕ2 −ϕ1,

which is possible because global phase factors are physically
meaningless.
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The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• Switching back the coefficient of |1〉 to Cartesian coordinates

|ψ〉 = ρ1|0〉+ (a + bi)|1〉

the normalization constraint

‖ρ1 ‖2 + ‖a+ib‖2 = ‖ρ1 ‖2 +(a−ib)(a+ib) = ‖ρ1 ‖2 +a2 + b2 = 1

yields the equation of a unit sphere in the real tridimensional space
with Cartesian coordinates: (a, b, ρ1).
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The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• The polar coordinates (ρ, θ,ϕ) of a point in the surface of a sphere
relate to Cartesian ones through the correspondence

x =ρ sin θ cosϕ

y =ρ sin θ sinϕ

z =ρ cos θ

• Recalling ρ = 1 (cf unit vector),

|ψ〉 = ρ1|0〉+ (a + ib)|1〉
= cos θ|0〉+ sin θ(cosϕ+ i sinϕ)|1〉
= cos θ|0〉+ e iϕ sin θ|1〉

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1, as
suggested by

θ ′ = 0 ⇒ |ψ〉 = cos 0|0〉+ e iϕ sin 0|1〉 = |0〉

θ ′ =
π

2
⇒ |ψ〉 = cos

π

2
|0〉+ e iϕ sin

π

2
|1〉 = e iϕ|1〉 = |1〉

Note that longitude (ϕ) is irrelevant in a pole!
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The Bloch sphere
Indeed, let |ψ ′〉 be the opposite point on the sphere with polar
coordinates (1, π− θ,ϕ+ π):

|ψ ′〉 = cos (π− θ)|0〉+ e i(ϕ+π) sin (π− θ)|1〉
= − cos θ|0〉+ e iϕe iπ sin θ|1〉
= − cos θ|0〉+ e iϕ sin θ|1〉
= −|ψ〉
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The Bloch sphere

which leads to

|ψ〉 = cos
θ

2
|0〉+ e iϕ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

The map θ
2 7→ θ is one-to-one at any point but at θ2 :

all points on the equator are mapped into a single point: the south pole.
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The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (ϕ),
and does not affect which state the arrow will collapse to, when
measured.
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The state evolution postulate

If a quantum state is a ray (i.e. a unit vector in a Hilbert space H up to
a global phase), its evolution is specified a certain kind of linear maps
U : H −→ H.

Linearity

U

∑
j

αj |vj〉

 =
∑
j

αj U(|vj〉)

just by itself has an important consequence: quantum states cannot be
cloned
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The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a〉|0〉) = |a〉|a〉 be a 2-qubit operator and |c〉 = 1√
2
(|a〉+ |b〉) for

|a〉, |b〉 orthogonal. Then,

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

As already seen, |x〉|y〉 = |xy〉 = |x〉 ⊗ |y〉
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But, linearity is not enough ...

... we need to enforce that the norm squared of the new amplitudes still
represent a probability distribution

If
∑
j

αj U(|vj〉) =
∑
j

α ′j |vj〉 then
∑
j

‖α ′j ‖2 = 1

This is achieved by making U unitary, i.e. such that U−1 = U†.
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What is U†? The adjoint map

Given a linear map U : H −→ H ′, its adjoint U† : H ′ −→ H is the unique
linear map such that

〈U†a|b〉 = 〈a|Ub〉

or, in the more ‘verbose’ notation for the inner product

(U†|a〉, |b〉) = (|a〉,U |b〉)

Note that (UV )† = V †U† and U†
†
= U because

〈V †U†a|b〉 = 〈U†a|Vb〉 = 〈a|UVb〉

and
〈U†

†
a|b〉 = 〈a|U†b〉
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The state evolution postulate

Postulate 2
The evolution over time of the state of a closed quantum system is
described by a unitary map.

The evolution is linear

U

∑
j

αj |vj〉

 =
∑
j

αj U(|vj〉)

and preserves the normalization constraint

If
∑
j

αj U(|vj〉) =
∑
j

α ′j |vj〉 then
∑
j

‖α ′j ‖2 = 1
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The state evolution postulate

Preservation of the normalization constraint means that unit length
vectors (and thus orthogonal subspaces) are mapped by U to unit length
vectors (and thus to orthogonal subspaces).

It also means that applying a transformation followed by a measurement
in the transformed basis is equivalent to a measurement followed by a
transformation.

This entails a condition on valid quantum operators: they must preserve
the inner product, i.e.

〈Ua|Ub〉 = 〈a|U†Ub〉 = 〈v |w〉

which is only the case iff U is unitary, i.e. U† is the inverse of U:

U†U = UU† = I
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Unitary maps

• Preserving the inner product means that a unitary operator maps
orthonormal bases to orthonormal bases.

• Conversely, any operator with this property is unitary.

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the jth column
is the image of U |j〉). Equivalently, rows are orthonormal (why?)
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Unitary maps

Unitarity is the only constraint on quantum operators: Any unitary
matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit
(in contrast with the classical case where the only non-trivial operation
on a bit is complement).

Finally, because the inverse of a unitary matrix is also a unitary matrix, a
quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible
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Representing linear maps

A linear map U : H −→ H ′ is fully characterized by specifying how it acts
on a basis of H. If H is finite this leads to a natural representation of U
as matrix.

Let {|j〉 | j ∈ n − 1} be a basis for a n-dimensional Hilbert space H, and
similarly {|i〉 | i ∈ m − 1} for a m-dimensional H ′ . Then the m × n
matrix corresponding to U is defined as[

U |0〉 U |1〉 · · · U |n − 1〉
]

i.e. its j th-column corresponds to m-dimensional vector U |j〉.

The Dirac notations provides a handy, alternative description of matrices
via outer products.
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Representing linear maps

Outer product
... is computed straightforwardly by matrix multiplication, e.g.

|0〉〈0| =

[
1
0

] [
1 0

]
=

[
1 0
0 0

]
|1〉〈0| =

[
0
1

] [
1 0

]
=

[
0 0
1 0

]
In general, for vectors |i〉, |j〉 in an orthonormal basis, |i〉〈j | is a square
matrix with 1 in position (i , j) and 0 elsewhere. As an operator, |i〉〈j |
maps |j〉 into |i〉 because

|i〉〈j | |j〉 = |i〉〈j |j〉 = |i〉

A linear map U : H −→ H ′ can be represented as a matrix∑
i∈m−1,j∈n−1

Ui,j |i〉〈j |
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Representing linear maps

Decomposition of the identity (for an orthonormal basis)

IH =
∑

i∈n−1

|i〉〈i |

Thus,

U = IH ′U IH =
∑

i∈m−1

|i〉〈i | U
∑

j∈n−1

|j〉〈j |

=
∑

i∈m−1,j∈n−1

|i〉〈i |U |j〉〈j |

=
∑

i∈m−1,j∈n−1

〈i |U |j〉 |i〉〈j |

Clearly,
Ui,j = 〈i |U |j〉
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Representing linear maps

because

〈i |U |j〉 = 〈i |

 ∑
i ′∈m−1,j ′∈n−1

Ui ′,j ′ |i
′〉〈j ′|

 |j〉

=
∑

i ′∈m−1,j ′∈n−1

Ui ′,j ′ 〈i |i ′〉〈j |j ′〉

=
∑

i ′∈m−1,j ′∈n−1

Ui ′,j ′ δii ′δjj ′ = Ui,j
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Representing linear maps

Any orthonormal provides a decomposition of the identity.

Is there a standard way to provide a decomposition for an arbitrary
operator U over a Hilbert H?

Yes, if U is normal operator, i.e. UU† = U†U, because of the

Spectral theorem
Any normal operator on a finite, n-dimensional Hilbert space H provides
a basis for H consisting of its eigenvectors. Thus,

U =
∑

i∈n−1

λi |λi 〉〈λi |

where each (λi , |λi 〉) is a eigenvalue / eigenvector pair.
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Typical quantum gates on 1 qubit

The X =

[
0 1
1 0

]
= |0〉〈1|+ |1〉〈0| gate

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

As X |+〉 = |+〉 and X |−〉 = −|−〉, its spectral decomposition yields

X = |+〉〈+|− |−〉〈−|
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Typical quantum gates on 1 qubit

Acts as
Z |0〉 = |0〉 and Z |1〉 = −|1〉

i.e. leaves |0〉 invariant, but injects a phase e iπ = −1 to |0〉,
corresponding to a rotation of π radians around the Z axis.

Clearly, its spectral decomposition yields:

Z = |0〉〈0|− |1〉〈1|
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Typical quantum gates on 1 qubit

The phase shift gate

Pφ =

[
1 0
0 e iφ

]
i.e. Pφ |0〉 = |0〉 and Pφ |1〉 = e iφ|1〉.

The probability of measuring a |0〉 or |1〉 remains unchanged, but it
modifies the phase of the quantum state.

This corresponds to a rotation of φ radians around the Z axis (i.e. along
a line of latitude on the Bloch sphere) by φ radians.
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Typical quantum gates on 1 qubit

Examples

• Z = Pπ

• S = Pπ
2
=
√
Z =

[
1 0
0 e i

π
2

]
=

[
1 0
0 i

]
• T = Pπ

4
=
√
S ( also called the π

8 gate)

T = Pπ
4

=

[
1 0
0 e i

π
4

]
which, up to a global phase factor e i

π
8 , is equivalent to[

e−i π8 0
0 e i

π
8

]
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Typical quantum gates on 1 qubit

Pauli gates
X ,Y ,Z specify a rotation by π radians around the corresponding axes on
the Bloch sphere.

I = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
X = |1〉〈0|+ |0〉〈1| =

[
0 1
1 0

]
Z = |0〉〈0|− |1〉〈1| =

[
1 0
0 −1

]
Y = i(−|1〉〈0|+ |0〉〈1|) =

[
0 −i
i 0

]
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Typical quantum gates on 1 qubit

Rotation gates
Correspond to arbitrary rotations around the three axes of the Bloch
sphere

Re(θ) =̂ e
−iθE

2 = cos

(
θ

2

)
I − i sin

θ

2
E

where e =̂ x , y , z and E =̂ X ,Y ,Z .

because, for any real number θ and matrix R st R2 = I , which is the case
for X , Y , and Z ,

e iθR = cos(θ)I + i sin(θ)R
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Typical quantum gates on 1 qubit

Rotation gates as matrices in the computational basis

Rx(θ) =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]

Ry (θ) =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ]

Rz(θ) =

[
e−i θ2 0

0 e i
θ
2

]
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Typical quantum gates on 1 qubit

Compute Rz(θ)|ψ〉 for |ψ〉 = cos
(
σ
2

)
|0〉+ e iγ sin

(
σ
2

)
|1〉

[
e−i θ2 0

0 e i
θ
2

] [
cos
(
σ
2

)
e iγ sin

(
σ
2

)] =

[
e−i θ2 cos

(
σ
2

)
e i

θ
2 e iγ sin

(
σ
2

)]

= e−i θ2

[
cos
(
σ
2

)
e iθe iγ sin

(
σ
2

)]
= e−i θ2

(
cos
(σ

2

)
|0〉 + e i(γ+θ) sin

(σ
2

)
|1〉
)

As global phase is insignificant, the angle mapping γ 7→ γ+ θ is a
rotation of θ around the z-axis of the Bloch sphere.
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Typical quantum gates on 1 qubit

Theorem
Let U be a 1-gate, and v ,w any two non-parallel axes of the Bloch
sphere. Then there exist real numbers α,βγ, δ st

U = e iαRv (β)Rw (γ)Rv (δ)

which means that any 1-gate can be expressed as a sequence of two
rotations about an axis and one rotation about another non parallel axis,
multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.
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Typical quantum gates on 1 qubit

The Hadamard gate creates superpositions

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 =

superposition︷ ︸︸ ︷
1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)
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Building larger states from smaller

Operator U in the no-cloning theorem acts on a 2-dimensional state, i.e.
over the composition of two qubits.

What does composition mean?

Postulate 3
The state space of a combined quantum system is the tensor product
V ⊗W of the state spaces V and W of its components.
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Composing quantum states
State spaces in a quantum system combine through tensor: ⊗

n m-dimensional vectors  a vector in mn-dimensional space

i.e. the state space of a quantum system grows exponentially with the
number of particles: cf, Feyman’s original motivation

Example

ab
c

⊗
de
f

 =



a

de
f


b

de
f


c

de
f




=



ad
ae
af
bd
be
bf
cd
ce
cf


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Composing quantum states

Tensor V ⊗W

• BV⊗W is a set of elements of the form |vi 〉 ⊗ |wj〉, for each
|vi 〉 ∈ BV , |wi 〉 ∈ BW and dim(V ⊗W) = dim(V)× dim(W)

• (|u1〉+ |u2〉)⊗ |z〉 = |u1〉 ⊗ |z〉+ |u2〉 ⊗ |z〉

• |z〉 ⊗ (|u1〉+ |u2〉) = |z〉 ⊗ |u1〉+ |z〉 ⊗ |u2〉

• (α|u〉)⊗ |z〉 = |u〉 ⊗ (α|z〉) = α(|u〉 ⊗ |z〉)

• 〈(|u2〉 ⊗ |z2〉)|(|u1〉 ⊗ |z1〉)〉 = 〈u2|u1〉〈z2|z1〉
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Composing quantum states

Clearly, every element of V ⊗W can be written as

α1(|v1〉 ⊗ |w1〉) + α2(|v2〉 ⊗ |w1〉) + · · ·+ αnm(|vn〉 ⊗ |wm〉)

Example
The basis of V ⊗W , for V ,W qubits with the computational basis is

{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

Thus, the tensor of α1|0〉+ α2|1〉 and β1|0〉+ β2|1〉 is

α1β1|0〉 ⊗ |0〉 + α1β2|0〉 ⊗ |1〉 + α2β1|1〉 ⊗ |0〉 + α2β2|1〉 ⊗ |1〉

i.e., in a simplified notation,

α1β1|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉
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Bases

The computational basis for a vector space

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

corresponding to the composition of n qubits (each living in V ) is the set

{|0〉 · · · |0〉|0〉︸ ︷︷ ︸
n

, |0〉 · · · |0〉|1〉︸ ︷︷ ︸
n

, |0〉 · · · |1〉|0〉︸ ︷︷ ︸
n

, · · · |1〉 · · · |1〉|1〉︸ ︷︷ ︸
n

}

abv
=

{|0 · · · 00〉︸ ︷︷ ︸
n

, |0 · · · 01〉︸ ︷︷ ︸
n

, |0 · · · 10〉︸ ︷︷ ︸
n

, · · · |1 · · · 11〉︸ ︷︷ ︸
n

}

which may be written in a compressed (decimal) way as

{|0〉, |1〉, |2〉, |3〉, · · · |2n − 1〉}
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Bases

The computational basis for a two qubit system would be

{|0〉, |1〉, |2〉, |3〉}

with

|0〉 = |00〉 =


1
0
0
0

 |1〉 = |01〉 =


0
1
0
0

 |2〉 = |10〉 =


0
0
1
0

 |3〉 = |11〉 =


0
0
0
1


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Bases

There are of course other bases ... besides the standard one, e.g.

The Bell basis

|Φ+〉 = 1√
2
(|00〉+ |11〉)

|Φ−〉 = 1√
2
(|00〉− |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉)

|Ψ−〉 = 1√
2
(|01〉− |10〉)

Compare with the Hadamard basis for the single qubit systems



Background: Hilbert spaces State Evolution Composition

Representing multi-qubit states

Any unit vector in a 2n Hilbert space represents a possible n-qubit state,
but for

... a certain level of redundancy

• As before, vectors that differ only in a global phase represent the
same quantum state

• but also the same phase factor in different qubits of a tensor
product represent the same state:

|u〉 ⊗ (e iφ|z〉) = e iφ(|u〉 ⊗ |z〉) = (e iφ|u〉)⊗ |z〉

Actually, phase factors in qubits of a single term of a superposition
can always be factored out into a coefficient for that term, i.e.
phase factors distribute over tensors
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Representing multi-qubit states

Representation

• Relative phases still matter (of course!)

1√
2
(|00〉+ |11〉) differs from

1√
2
(e iφ|00〉+ |11〉)

even if

1√
2
(|00〉+ |11〉) =

1√
2
(e iφ|00〉+ e iφ|11〉) =

e iφ√
2
(|00〉+ |11〉

• The complex projective space of dimension 1 (depicted in the Block
sphere) generalises to higher dimensions, although in practice
linearity makes Hilbert spaces easier to use.
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Entanglement

Most states in V ⊗W cannot be written as |u〉 ⊗ |z〉

For example, the Bell state

|Φ+〉 = 1√
2
(|00〉+ |11〉) =

1√
2
|00〉+ 1√

2
|11〉

is entangled
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Entanglement

Actually, to make |Φ+〉 equal to

(α1|0〉+β1|1〉)⊗(α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

would require that α1β2 = β1α2 = 0 which implies that either

α1α2 = 0 or β1β2 = 0

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a, a), (b, b)} ⊆ A× A

cannot be separated, i.e. written as a Cartesian product of subsets of A.
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2-gates: CNOT

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT = |0〉〈0|⊗ I + |1〉〈1|⊗ X

= |0〉〈0|⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1|⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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2-gates: CNOT

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT

(
1√
2
(|0〉+ |1〉)⊗ |0〉

)
= CNOT

(
1√
2
(|00〉+ |10〉)

)
=

1√
2
(|00〉+ |11〉)

Being its own inverse, also takes an entangled state to an unentangled
one.

Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U ⊗ V ) |v〉 is entangled iff |v〉 is
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2-gates: CNOT
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2-gates: CNOT

The notions of control/target bit in CNOT are arbitrary: they depend on
what basis is considered. The standard behaviour is obtained in the
computational basis. However, roles are interchanged in the Hadamard
basis in which the effect of CNOT is

|++〉 7→ |++〉 |+−〉 7→ |−−〉 |−+〉 7→ |−+〉 |−−〉 7→ |+−〉

Exercise

80 5 Quantum State Transformations

standard basis elements, the effect of the controlled gate can be somewhat counterintuitive. For
example, consider the Cnot gate in the Hadamard basis {|+⟩, |−⟩}:
Cnot : |++⟩ → |++⟩

|+−⟩ → |−−⟩
|−+⟩ → |−+⟩
|−−⟩ → |+−⟩.

In the Hadamard basis, it is the state of the second qubit that remains unchanged, and the state
of the first qubit that is flipped depending on the state of the second bit. Thus, in this basis the
sense of which bit is the control bit and which the target bit has been reversed. But we have
not changed the transformation at all, only the way we are thinking about it. Furthermore, in
most bases, we do not see a control bit or a target bit at all. For example, as we have seen, the
controlled-not transforms 1√

2
(|0⟩ + |1⟩)|0⟩ to 1√

2
(|00⟩ + |11⟩). In this case the controlled-not

entangles the qubits so that it is not possible to talk about their states separately.
A related fact, which we will use in constructing algorithms and in quantum error correction,

is that the following two circuits are equivalent:

H

H

H

H
=

Caution 3: Reading circuit diagrams The graphical representation of quantum circuits can be
misleading if one is not careful to interpret it properly. In particular, one cannot determine the
effect the transformation has on the input qubits, even if they are all in standard basis states, by
simply looking at the line in the diagram corresponding to that qubit. Let us look at the circuit

H H

acting on the input state |0⟩|0⟩. Since the Hadamard transformation is its own inverse, it might at
first appear that the first qubit’s state would remain unchanged by the transformation. But it does
not. Recall from caution 2 that the controlled-not gate does not leave the first qubit unaffected in
general. In fact, this circuit takes the input state |00⟩ to 1/2(|00⟩ + |10⟩ + |01⟩ − |11⟩), an effect
that cannot be seen immediately from the circuit and so must be explicitly calculated.

5.3 Applications of Simple Gates

For many years, EPR pairs, and entanglement more generally, were viewed as quantum mechan-
ical oddities of merely theoretical interest. Quantum information processing changes that per-
ception by providing practical applications of entanglement. Two communications applications,
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The proof

LHS =
1

2

[
H H
H −H

] CNOT︷ ︸︸ ︷[
I 0
0 X

] [
H H
H −H

]
=

1

2

[
H HX
H −HX

] [
H H
H −H

]
=

1

2

[
I + HXH I − HXH
I − HXH I + HXH

]
=

1

2

[
I + Z I − Z
I − Z I + Z

]

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


= I ⊗ |0〉〈0| + X ⊗ |1〉〈1| = RHS

noting that

H ⊗ H = (I ⊗ H)(H ⊗ I ) =
1√
2

[
H 0
0 H

] [
I I
I −I

]
=

1√
2

[
H H
H −H

]
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Exercise

Discuss

5.2 Some Simple Quantum Gates 79

In other words, this swap circuit takes

|00⟩ "→ |00⟩
|01⟩ "→ |10⟩
|10⟩ "→ |01⟩
|11⟩ "→ |11⟩,

and |ψ⟩|φ⟩ "→ |φ⟩|ψ⟩ for all single-qubit states |ψ⟩ and |φ⟩.
Three cautions are in order. The first concerns the use of a basis to specify the transformation.

The second concerns the basis dependence of the notion of control. The third suggests care in
interpreting the graphical notation for quantum circuits.

Caution 1: Phases in Specifications of Transformations Section 3.1.3 discussed the important
distinction between the quantum state space (projective space) and the associated complex vector
space. We need to keep this distinction in mind when interpreting the standard ways quantum state
transformations are specified. A unitary transformation on the complex vector space is completely
determined by its action on a basis. The unitary transformation is not completely determined by
specifying what states the states corresponding to basis states are sent to, a subtle distinction. For
example, the controlled phase shift takes the four quantum states represented by |00⟩, |01⟩, |10⟩,
and |11⟩ to themselves; |10⟩ and eiθ |10⟩ represent exactly the same quantum state, and so do |11⟩
and eiθ |11⟩. As we saw above, however, this transformation is not the identity transformation
since it takes 1√

2
(|00⟩ + |11⟩) to 1√

2
(|00⟩ + eiθ |10⟩). To avoid mistakes, remember that notation

such as

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

is used to specify a unitary transformation on the complex vector space in terms of vectors in
that vectors space, not in terms of the states corresponding to these vectors. Specifying that the
vector |0⟩ goes to the vector −|1⟩ is different from specifying that |0⟩ goes to |1⟩ because the two
vectors −|1⟩ and |1⟩ are different vectors even if they correspond to the same state. The quantum
transformation on the state space is easily derived from the unitary transformation on the associated
complex vector space.

Caution 2: Basis Dependence of the Notion of Control The notion of the control bit and the target
bit is a carryover from the classical gate and should not be taken too literally. In the standard basis,
the Cnot operator behaves exactly as the classical gate does on classical bits. However, one should
not conclude that the control bit is never changed. When the input qubits are not one of the
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Controlled Q-gates

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to

78 5 Quantum State Transformations

A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

CQ |0〉|ϕ〉 = |0〉|ϕ〉
CQ |1〉|ϕ〉 = |1〉Q |ϕ〉

CQ = |0〉〈0|⊗ I + |1〉〈1|⊗ Q

corresponding to the following matrix in the standard basis:

CQ =

[
1 0
0 Q

]
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Controlled phase shift gate

Ce iθ = |00〉〈00|+ |01〉〈01|+ e iθ|10〉〈10|+ e iθ|11〉〈11|

Ce iθ =


1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Transforming a global into a local phase

1√
2
(|00〉+ |11〉) −→ 1√

2
(|00〉+ e iθ|11〉)

Actually, a unitary transformation is completely determined by its action
on a basis, but not by specifying what states the states corresponding to
basis states are sent to.
Example: e iθ takes the four quantum states to themselves (because e.g.
|10〉 and e iθ|10〉 represent the same state), but a global phase can be
transformed into a local one, as above
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CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled CNOT . If the first two bits are
in the state |1〉 applies X the third bit, else it does nothing:

|q1q2q3〉 7→ |q1q2, q3 ⊕ (q1 ∧ q2)〉

In matrix form, 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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Universal set of gates?

Is there a universal set of quantum gates?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.
However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Definitions

• The error in approximating U by V is

Er(U,V ) = max|φ〉 ‖(U − V )|φ〉‖

• An operator U can be approximated to arbitrary accuracy if for any
positive ε there exists another unitary transformation V st
Er(U,V ) ≤ ε.

• A set of gates is universal if for any integer n ≥ 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.
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Universal set of gates?

Some examples

• The set {H,T } is universal for 1-gates.

• The set {H,T ,CNOT } is a universal set of gates.

How efficient is an approximation?
To approximate an unitary transformation encoding some specific
computation, one would expect to use a number of gates from the
universal set which is polynomial in the number of qubits and the inverse
of the quality factor ε.

Main result: theorem of Solovay-Kitaev
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