
Observational Equivalence

Lúıs Soares Barbosa

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho

Observable transitions

a
=⇒ ⊆ P× P

• L ∪ {ε}

• A
ε

=⇒-transition corresponds to zero or more non observable
transitions

• inference rules for
a

=⇒:

(O1)
E

ε
=⇒ E

E
τ−→ E ′ E ′ ε

=⇒ F
(O2)

E
ε

=⇒ F

E
ε

=⇒ E ′ E ′ a−→ F ′ F ′ ε
=⇒ F

(O3) for a ∈ L
E

a
=⇒ F

Example

T0=̂ j .T1 + i .T2

T1=̂ i .T3

T2=̂ j .T3

T3=̂ τ.T0

and

A=̂ i .j .A+ j .i .A

Example

From their graphs,

T0

j
~~

i

T1

i

T2

j

~~

T3

τ

jj

and

A

j
~~

i

i .A

i
((

j .A

j
vv

we conclude that T0 � A (why?).

Observational equivalence

E ≈ F

• Processes E , F are observationally equivalent if there exists a weak
bisimulation S st {〈E ,F 〉} ∈ S .

• A binary relation S in P is a weak bisimulation iff, whenever
(E ,F) ∈ S and a ∈ L ∪ {ε},

i) E
a

=⇒ E ′ ⇒ F
a

=⇒ F ′ ∧ (E ′,F ′) ∈ S

ii) F
a

=⇒ F ′ ⇒ E
a

=⇒ E ′ ∧ (E ′,F ′) ∈ S

I.e.,
≈ =

⋃
{S ⊆ P× P | S is a weak bisimulation}

Observational equivalence

Properties

• as expected: ≈ is an equivalence relation

• basic property: for any E ∈ P,

E ≈ τ.E

(proof idea: idP ∪ {(E , τ.E) | E ∈ P} is a weak bisimulation

• weak vs. strict:
∼ ⊆ ≈

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

E\K ≈ F\K

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Lemma
Let E ≈ F . Then, for any P ∈ P and K ⊆ L,

a.E ≈ a.F

E | P ≈ F | P

E\K ≈ F\K

but
E + P ≈ F + P

does not hold, in general.

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i . 0 ≈ τ.i .0

However
j . 0+i . 0 6≈j . 0+τ.i .0

Actually,

j . 0+i .0

j
{{

i
##

0 0

j . 0+τ.i .0

j
zz

τ
%%

0 i .0

i

��

0

Is ≈ a congruence?

Example (initial τ restricts options ’menu’)

i . 0 ≈ τ.i .0

However
j . 0+i . 0 6≈j . 0+τ.i .0

Actually,

j . 0+i .0

j
{{

i
##

0 0

j . 0+τ.i .0

j
zz

τ
%%

0 i .0

i

��

0

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E
τ−→ E ′ ⇒ F

τ−→ X
ε

=⇒ F ′ and E ′ ≈ F ′

iii) F
τ−→ F ′ ⇒ E

τ−→ X
ε

=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

Solution: force any initial τ to be matched by another τ

Process equality
Two processes E and F are equal (or observationally congruent) iff

i) E ≈ F

ii) E
τ−→ E ′ ⇒ F

τ−→ X
ε

=⇒ F ′ and E ′ ≈ F ′

iii) F
τ−→ F ′ ⇒ E

τ−→ X
ε

=⇒ E ′ and E ′ ≈ F ′

• note that E 6= τ.E , but τ.E = τ.τ.E

Forcing a congruence: E = F

= can be regarded as a restriction of ≈ to all pairs of processes
which preserve it in additive contexts

Lemma
Let E and F be processes st the union of their sorts is distinct of L. Then,

E = F ≡ ∀G∈P . (E + G ≈ F + G)

Properties of =

Lemma

E ≈ F ≡ (E = F) ∨ (E = τ.F) ∨ (τ.E = F)

• note that E 6= τ.E , but τ.E = τ.τ.E

Properties of =

Lemma

∼ ⊆ = ⊆ ≈

So,

the whole ∼ theory remains valid

Additionally,

Lemma (additional laws)

a.τ.E = a.E

E + τ.E = τ.E

a.(E + τ.F) = a.(E + τ.F) + a.F

Solving equations

Have equations over (P, ∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃ }Ẽ ∧ Q̃ ∼ {Q̃/X̃ }Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃ }Ẽ ∧ Q̃ = {Q̃/X̃ }Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P, ∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃ }Ẽ ∧ Q̃ ∼ {Q̃/X̃ }Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃ }Ẽ ∧ Q̃ = {Q̃/X̃ }Ẽ ⇒ P̃ = Q̃

Solving equations

Have equations over (P, ∼) or (P,=) (unique) solutions?

Lemma
Recursive equations X̃ = Ẽ (X̃) or X̃ ∼ Ẽ (X̃), over P, have unique
solutions (up to = or ∼, respectively). Formally,

i) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is weakly guarded. Then

P̃ ∼ {P̃/X̃ }Ẽ ∧ Q̃ ∼ {Q̃/X̃ }Ẽ ⇒ P̃ ∼ Q̃

ii) Let Ẽ = {Ei | i ∈ I } be a family of expressions with a
maximum of I free variables ({Xi | i ∈ I }) such that any
variable free in Ei is guarded and sequential. Then

P̃ = {P̃/X̃ }Ẽ ∧ Q̃ = {Q̃/X̃ }Ẽ ⇒ P̃ = Q̃

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ. 0+a.X + b.a.X but
guarded only in the second

Conditions on variables

guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act − {τ}

weakly guarded :
X occurs in a sub-expression of type a.E ′ for a ∈ Act

in both cases assures that, until a guard is reached, behaviour does
not depends on the process that instantiates the variable

example: X is weakly guarded in both τ.X and τ. 0+a.X + b.a.X but
guarded only in the second

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

example: X is not sequential in X = (a.X | a.0)\{a}

Conditions on variables

sequential :
X is sequential in E if every strict sub-expression in which
X occurs is either a.E ′, for a ∈ Act, or ΣẼ .

avoids X to become guarded by a τ as a result of an interaction

example: X is not sequential in X = (a.X | a.0)\{a}

Example (1)

Consider

Sem=̂ get.put.Sem

P1=̂ get.c1.put.P1

P2=̂ get.c2.put.P2

S=̂ (Sem | P1 | P2)\{get,put}

and
S ′=̂ τ.c1.S

′ + τ.c2.S
′

to prove S ∼ S ′, show both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

Consider

Sem=̂ get.put.Sem

P1=̂ get.c1.put.P1

P2=̂ get.c2.put.P2

S=̂ (Sem | P1 | P2)\{get,put}

and
S ′=̂ τ.c1.S

′ + τ.c2.S
′

to prove S ∼ S ′, show both are solutions of

X = τ.c1.X + τ.c2.X

Example (1)

proof

S = τ. (c1.put.P1 | P2 | put.Sem)\K +τ.(P1 | c2.put.P2 | put.Sem)\K

= τ.c1. (put.P1 | P2 | put.Sem)\K +τ.c2.(P1 | put.P2 | put.Sem)\K

= τ.c1.τ. (P1 | P2 | Sem)\K +τ.c2.τ.(P1 | P2 | Sem)\K

= τ.c1.τ.S + τ.c2.τ.S

= τ.c1.S + τ.c2.S

= {S/X }E

for S ′ is immediate

Example (2)

Consider,

B=̂ in.B1 B ′=̂ (C1 | C2)\m

B1=̂ in.B2 + out.B C1=̂ in.m.C1

B2=̂ out.B1 C2=̂ m.out.C2

B ′ is a solution of

X = E (X ,Y ,Z) = in.Y

Y = E1(X ,Y ,Z) = in.Z + out.X

Z = E3(X ,Y ,Z) = out.Y

through σ = {B/X ,B1/Y ,B2/Z }

Example (2)

To prove B =B’

B ′ = (C1 | C2)\m

= in.(m.C1 | C2)\m

= in.τ.(C1 | out.C2)\m

= in.(C1 | out.C2)\m

Let S1 = (C1 | out.C2)\m to proceed:

S1 = (C1 | out.C2)\m

= in. (m.C1 | out.C2)\m +out.(C1 | C2)\m

= in. (m.C1 | out.C2)\m +out.B ′

Example (2)

Finally, let, S2 = (m.C1 | out.C2)\m. Then,

S2 = (m.C1 | out.C2)\m

= out.(m.C1 | C2)\m

= out.τ.(C1 | out.C2)\m

= out.τ.S1

= out.S1

Example (2)

Note the same problem can be solved with a system of 2 equations:

X = E (X ,Y) = in.Y

Y = E ′(X ,Y) = in.out.Y + out.in.Y

Clearly, by substitution,

B = in.B1

B1 = in.out.B1 + out.in.B1

Example (2)

On the other hand, it’s already proved that B ′ = ... = in.S1.
so,

S1 = (C1 | out.C2)\m

= in. (m.C1 | out.C2)\m +out.B ′

= in.out. (m.C1 | C2)\m +out.B ′

= in.out.τ. (C1 | out.C2)\m +out.B ′

= in.out.τ.S1 + out.B ′

= in.out.S1 + out.B ′

= in.out.S1 + out.in.S1

Hence, B ′ = {B ′/X , S1/Y }E and S1 = {B ′/X ,S1/Y }E ′

