Quantum Systems

(Lecture 5: Quantum algorithms — first examples and techniques)

Luís Soares Barbosa

Universidade do Minho

Computing: A probabilistic machine

States: Given a set of possible configurations, states are vectors of probabilities in \mathbb{R}^n which express indeterminacy about the exact physical configuration, e.g. $\left[p_0\cdots p_n\right]^T$ st $\sum_i p_1=1$ Operator: double stochastic matrix (must come (go) from (to) somewhere), where $M_{i,j}$ specifies the probability of evolution from configuration j to i

Evolution: computed through matrix multiplication with a vector $|u\rangle$ of current probabilities

• $M|u\rangle$ (next state)

Measurement: the system is always in some configuration — if found in i, the new state will be a vector $|t\rangle$ st $t_i = \delta_{i,i}$

Computing: A probabilistic machine

Composition:

$$ho\otimes q \ = \ egin{bmatrix}
ho_1 \ 1-
ho_1 \end{bmatrix} \otimes egin{bmatrix} q_1 \ 1-q_1 \end{bmatrix} \ = \ egin{bmatrix}
ho_1q_1 \
ho_1(1-q_1) \ (1-
ho_1)q_1 \ (1-
ho_1)(1-q_1) \end{bmatrix}$$

• correlated states: cannot be expressed as $p \otimes q$, e.g.

Operators are also composed by \otimes (Kronecker product):

$$M \otimes N = \begin{bmatrix} M_{1,1}N & \cdots & M_{1,n}N \\ \vdots & & \vdots \\ M_{m,1}N & \cdots & M_{m,n}N \end{bmatrix}$$

Computing: A quantum machine

States: given a set of possible configurations, states are unit vectors of (complex) amplitudes in \mathbb{C}^n

Operator: unitary matrix $(M^{\dagger}M = I)$. The norm squared of a unitary matrix forms a double stochastic one.

Evolution: computed through matrix multiplication with a vector $|u\rangle$ of current amplitudes (wave function)

- $M|u\rangle$ (next state)
- $|u\rangle^T M^T$ (previous state)

Measurement: configuration i is observed with probability $\|\alpha_i\|^2$ if found in i, the new state will be a vector $|t\rangle$ st $t_j = \delta_{j,i}$

Composition: also by a tensor on the complex vector space; may exist entangled states

Computing: Algorithms

Quantum algorithms

- 1. State preparation (fix initial setting)
- 2. Transformation (combination of unitary transformations)
- 3. Measurement (projection onto a basis vector associated with a measurement tool)

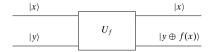
What's next?

- 1. Study a number of algorithmic techniques
- 2. and their application to the development of quantum algorithms

The Deutsch problem (from Lecture 1)

Is $f: \mathbf{2} \longrightarrow \mathbf{2}$ constant, with a unique evaluation?

Oracle



where \oplus stands for exclusive or, i.e. addition module 2.

- The oracle takes input $|x\rangle|y\rangle$ to $|x\rangle|y\oplus f(x)\rangle$
- Fixing y = 0 the output is $|x\rangle|f(x)\rangle$

The Deutsch problem (from Lecture 1)

Preparing the first qubit as $|x\rangle$ is the (quantum version of) input x:

$$\begin{array}{ccc} |0\rangle|0\rangle & \mapsto & |0\rangle|f(0)\rangle \\ |1\rangle|0\rangle & \mapsto & |1\rangle|f(1)\rangle \end{array}$$

But in the quantum world, one can better: input a superposition of $|0\rangle$ and $|1\rangle$ to get

$$|\frac{|0\rangle+|1\rangle}{\sqrt{2}},0\rangle \;=\; \left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)|0\rangle \;=\; \frac{1}{\sqrt{2}}|0\rangle\,|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\,|0\rangle \;\mapsto\; \cdots$$

The Deutsch problem (from Lecture 1)

. . .

$$U_{f}\left(\frac{1}{\sqrt{2}}|0\rangle|0\rangle + \frac{1}{\sqrt{2}}|1\rangle|0\rangle\right) = \frac{1}{\sqrt{2}}U_{f}|0\rangle|0\rangle + \frac{1}{\sqrt{2}}U_{f}|1\rangle|0\rangle$$

$$= \frac{1}{\sqrt{2}}|0\rangle|0\oplus f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle|0\oplus f1\rangle$$

$$= \frac{1}{\sqrt{2}}|0\rangle|f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle|f1\rangle$$

- The value of f on both possible inputs (0 and 1) was computed simultaneously in superposition
- Double evaluation the bottleneck in a classical solution was avoided by superposition

Is such quantum parallelism useful? (from Lecture 1)

NO

Although both values have been computed simultaneously, only one of them is retrieved upon measurement in the computational basis: Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may take, but on a global property of f: whether it is constant or not, technically on the value of

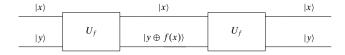
$$f(0) \oplus f(1)$$

The Deutsch algorithm explores another quantum resource — interference — to obtain that global information on *f*

Is the oracle a quantum gate?

First of all, one must prove that

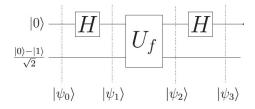
• The oracle is a unitary, i.e. reversible gate



$$|x\rangle|(y\oplus f(x))\oplus f(x)\rangle = |x\rangle|y\oplus (f(x)\oplus f(x))\rangle = |x\rangle|y\oplus 0\rangle = |x\rangle|y\rangle$$

Deutsch algorithm (from Lecture 1)

Idea: Avoid double evaluation by superposition and interference



The circuit computes:

$$|\phi_1\rangle \;=\; \frac{|0\rangle + |1\rangle}{\sqrt{2}} \, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \;=\; \frac{|00\rangle - |01\rangle + |10\rangle - |11\rangle}{2}$$

Deutsch algorithm (from Lecture 1)

After the oracle, at φ_2 , one obtains

$$|x\rangle \frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}} = \begin{cases} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \Leftarrow f(x) = 0\\ |x\rangle \frac{|1\rangle - |0\rangle}{\sqrt{2}} & \Leftarrow f(x) = 1 \end{cases}$$
$$= (-1)^{f(x)} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

For $|x\rangle$ a superposition:

$$\begin{array}{l} |\phi_2\rangle \;=\; \left(\frac{(-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) \; \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \\ \;=\; \left\{\frac{(\pm 1)\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \;\; \Leftarrow f \, \text{constant}}{(\pm 1)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \;\; \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \;\; \Leftarrow f \, \text{not constant}} \end{array}$$

Deutsch algorithm (from Lecture 1)

$$\begin{array}{ll} |\sigma_{3}\rangle \; = \; H|\sigma_{2}\rangle \\ \\ = \; \begin{cases} (\underline{+}1)\,|0\rangle\,\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ constant} \\ (\underline{+}1)\,|1\rangle\,\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ not constant} \end{cases}$$

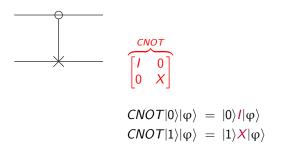
To answer the original problem is now enough to measure the first qubit: if it is in state $|0\rangle$, then f is constant.

Note

As the initial state in the second qubit can be prepared as $H|1\rangle$, the circuit is equivalent to

$$(H \otimes I) U_f (H \otimes H)(|01\rangle)$$

Phase kick-back



Recall its effect when applied in the Hadamard basis, e.g.

$$\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)\,\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\,\mapsto\,\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)\,\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

The phase jumps, or is kicked back, from the second to the first qubit.

This happens because $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an eigenvector of

- X (with $\lambda = -1$) and of I (with $\lambda = 1$)
- and, thus, $X\frac{|0\rangle-|1\rangle}{\sqrt{2}}=-1\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ and $I\frac{|0\rangle-|1\rangle}{\sqrt{2}}=1\frac{|0\rangle-|1\rangle}{\sqrt{2}}$

Thus,

$$\begin{array}{l} \textit{CNOT} |1\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \; = \; |1\rangle \left(X \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right) \\ = \; |1\rangle \left((-1) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)\right) \\ = \; -|1\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \end{array}$$

while
$$CNOT |0\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = |0\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

The phase 'kick back' technique

The phase has been kicked back to the first (control) qubit:

$$\mathit{CNOT}\ket{i}\left(\dfrac{\ket{0}-\ket{1}}{\sqrt{2}}\right) \ = \ (-1)^i\ket{i}\left(\dfrac{\ket{0}-\ket{1}}{\sqrt{2}}\right)$$

for $i \in \{0, 1\}$, yielding, when the first (control) qubit is in a superposition of $|0\rangle$ and $|1\rangle$.

$$\textit{CNOT}\left(\alpha|0\rangle+\beta|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \; = \; (\alpha|0\rangle-\beta|1\rangle)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

The phase 'kick back' technique

Input an eigenvector to the target qubit of operator $\hat{U}_{f(x)}$, and associate the eigenvalue with the state of the control qubit

Phase 'kick back' in the Deutsch algorithm

Instead of CNOT, an oracle U_f for an arbitrary Boolean function $f: \mathbf{2} \longrightarrow \mathbf{2}$, presented as a controlled-gate, i.e. a 1-gate $\widehat{U}_{f(x)}$ acting on the second qubit and controlled by the state $|x\rangle$ of the first one, mapping

$$|y\rangle \mapsto |y \oplus f(x)\rangle$$

The critical issue is that state $|-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}}$ is an eigenvector of $\widehat{U}_{f(x)}$

$$\begin{aligned} |U_f|x\rangle|-\rangle &= |x\rangle \widehat{U}_{f(x)}|-\rangle \\ &= \left(\frac{|x\rangle \widehat{U}_{f(x)}|0\rangle - |x\rangle \widehat{U}_{f(x)}|1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{|x\rangle|0 \oplus f(x)\rangle - |x\rangle|1 \oplus f(x)\rangle}{\sqrt{2}}\right) \\ &= |x\rangle \left(\frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}\right) \\ &= |x\rangle (-1)^{f(x)} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) = |x\rangle (-1)^{f(x)}|-\rangle \end{aligned}$$

Thus, when the control qubit is in a superposition of $|0\rangle$ and $|1\rangle$,

$$U_f\left(lpha|0
angle+eta|1
angle
ight)\left(rac{|0
angle-|1
angle}{\sqrt{2}}
ight) \ = \ \left((-1)^{f(0)}lpha|0
angle+(-1)^{f(1)}eta|1
angle
ight) \ |-
angle$$

Generalizing Deutsch ...

Generalizing Deutsch's algorithm to functions whose domain is an initial segment n of \mathbb{N} encoded into a binary string

i.e. the set of natural numbers from 0 to $2^n - 1$

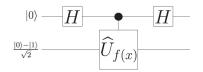
The Deutsch-Jozsa problem

Assuming $f: \mathbf{2}^n \longrightarrow \mathbf{2}$ is either balanced or constant, determine which is the case with a unique evaluation

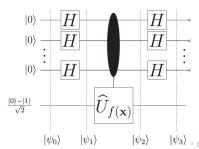
The oracle

Generalizing Deutsch ...

The Deutsch circuit



The Deutsch-Joza circuit

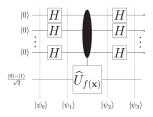


The crucial step is to compute $H^{\otimes n}$ over n qubits:

$$\begin{split} \boldsymbol{H}^{\otimes n}|0\rangle^{\otimes n} \; &= \; \left(\frac{1}{\sqrt{2}}\right)^n \underbrace{(|0\rangle + |1\rangle) \otimes \cdots \otimes (|0\rangle + |1\rangle)}_{n} \\ &= \; \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \end{split}$$

Thus

$$\begin{array}{ll} \varphi_0 \ = \ |0\rangle^{\otimes n} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \\ \varphi_1 \ = \ \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \end{array}$$



The phase kick-back effect

$$\begin{aligned} \mathbf{\phi_2} &= \frac{1}{\sqrt{2^n}} \mathbf{U}_f \left(\sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \right) \\ &= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right) \end{aligned}$$

Finally, we have to compute the last stage of H^{\otimes} application.

$$H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle) = \frac{1}{\sqrt{2}}\sum_{z\in\mathbf{2}}(-1)^{xz}|z\rangle$$

$$H^{\otimes}|x\rangle = H^{\otimes}(|x_{1}\rangle, \cdots, |x_{n}\rangle)$$

$$= H|x_{1}\rangle \otimes \cdots \otimes H|x_{n}\rangle$$

$$= \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_{1}}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_{2}}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_{n}}|1\rangle)$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{z_{1}z_{2}\cdots z_{n} \in 2} (-1)^{x_{1}z_{1} + x_{2}z_{2} + \cdots + x_{n}z_{n}}|z_{1}\rangle|z_{2}\rangle \cdots |z_{n}\rangle$$

$$= \frac{1}{\sqrt{2^{n}}} \sum_{z_{n} \in 2^{n}} (-1)^{x_{n}z_{n}}|z_{n}\rangle$$

$$\begin{split} |\phi_3\rangle \; &=\; \frac{\sum_{\mathbf{x} \in \mathbf{2}^n} (-1)^{f(\mathbf{x})} \sum_{\mathbf{z} \in \{0,1\}^n} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^n} \; \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &=\; \frac{\sum_{\mathbf{x}, \mathbf{z} \in \mathbf{2}^n} (-1)^{f(\mathbf{x})} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^n} \; \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &=\; \frac{\sum_{\mathbf{x}, \mathbf{z} \in \mathbf{2}^n} (-1)^{f(\mathbf{x}) + \mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^n} \; \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{split}$$

Now, consider the amplitude for state $|z\rangle = |0\rangle^{\otimes}$:

$$\frac{1}{2^n} \sum_{x \in 2^n} (-1)^{f(x)}$$

Thus

$$f$$
 is constant at 1 \rightsquigarrow $\frac{-(2^n)|0\rangle}{2^n} = -|0\rangle$

$$f$$
 is constant at 0 \rightsquigarrow $\frac{(2^n)|0\rangle}{2^n} = |0\rangle$

As $|\phi_3\rangle$ has unit length, all other amplitudes must be 0 and the top qubits collapse to $|0\rangle$

$$f$$
 is balanced $\rightsquigarrow \frac{0|0\rangle}{2^n} = 0|0\rangle$

because half of the x will cancel the other half. The top qubits collapse to some other basis state, as $|0\rangle$ has zero amplitude

The top qubits collapse to $|0\rangle$ iff f is constant

Quantum Algorithms

The Deutsch-Jozsa algorithm: Lessons learnt

- Exponential speed up: f was evaluated once rather than $2^n 1$ times
- The quantum state encoded global properties of function f
- ... that can be extracted by exploiting cleverly such non local correlations.

Quantum Algorithms

The Deutsch-Jozsa algorithm

Exponential speed up: f was evaluated once rather than $2^n - 1$ times

Classes of quantum algorithm

- Based on the quantum Fourier transform: The Deutsch-Jozsa is a simple example; Phase estimation; Shor algorithm; etc.
- Based on amplitude amplification: Variants of Grover algorithm for search processes.
- Quantum simulation.