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The principles

Quantum computation explores the laws of quantum theory as
computational resources.

Thus, the principles of the former are directly derived from the postulates
of the latter.

• The state space postulate

• The state evolution postulate

• The state composition postulate

• The state measurement postulate

The underlying maths is that of Hilbert spaces.
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The underlying maths: Hilbert spaces

Complex, inner-product vector space
A complex vector space with inner product

〈−|−〉 : V × V −→ C

such that

(1) 〈v |
∑
i

λi · |wi 〉〉 =
∑
i

λi 〈v |wi 〉

(2) 〈v |w〉 = 〈w |v〉
(3) 〈v |v〉 ≥ 0 (with equality iff |v〉 = 0)

Note: 〈−|−〉 is conjugate linear in the first argument:

〈
∑
i

λi · |wi 〉|v〉 =
∑
i

λi 〈wi |v〉

Notation: 〈v |w〉 ≡ 〈v ,w〉 ≡ (|v〉, |w〉)



Background: Hilbert spaces State Evolution Composition Measurement

Dirac’s notation

Dirac’s bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space, amenable to calculations and with
direct correspondence to diagrammatic (categorial) representations of
process theories

|u〉 A ket stands for a vector in an Hilbert space V . In Cn, a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

〈u| A bra is a vector in the dual space V †, i.e. scalar-valued
linear maps in V — a row vector in Cn.

There is a bijective correspondence between |u〉 and 〈u|

|u〉 =

u1...
un

 ⇔ [
u1 · · · un

]
= 〈u|
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Inner product: examples

In C

〈a + bi |c + di〉 = (a − bi)(c + di) = ac + adi − bci + bd

In Cn: The dot product
A useful example of a inner product is the dot product

〈u|v〉 =


u1
u2
...
un

 .

v1
v2
...
vn

 =
[
u1 u2 · · · un

]︸ ︷︷ ︸
〈u|


v1
v2
...
vn

 =

n∑
i=1

uivi

where c = a − ib is the complex conjugate of c = a + ib

〈u| is the adjoint of vector |u〉, i.e a vector in the dual vector space V †.
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Old friends: The dual space

V †

If V is a Hilbert space, V † is the space of linear maps from V to C.

Elements of V † are denoted by

〈u| : V −→ C defined by 〈u|(|v〉) = 〈u|v〉

In a matricial representation 〈u| is obtained as the Hermitian conjugate
(i.e. the transpose of the vector composed by the complex conjugate of
each element) of |u〉, therefore the dot product of |u〉 and |v〉.
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Old friends: Norms and orthogonality

Old friends

• |v〉 and |w〉 are orthogonal if 〈v |w〉 = 0

• norm: ‖ |v〉‖=
√
〈v |v〉

• normalization: |v〉
‖|v〉‖

• |v〉 is a unit vector if ‖ |v〉‖= 1

• A set of vectors {|i〉, |j〉, · · · , } is orthonormal if each |i〉 is a unit
vector and

〈i |j〉 = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0
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Old friends: Bases

Orthonormal basis
A orthonormal basis for a Hilbert space V of dimension n is a set
B = {|i〉} of n linearly independent elements of V st

• 〈i |j〉 = δi,j for all |i〉, |j〉 ∈ B

• and B spans V , i.e. every |v〉 in V can be written as

|v〉 =
∑
i

αi |i〉 for some αi ∈ C

Note that the amplitude or coefficient of |v〉 wrt |i〉 satisfies

αi = 〈i |v〉

Why?
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Bases

αi = 〈i |v〉 because

〈i |v〉 = 〈i |
∑
j

αj j〉

=
∑
j

αj〈i |j〉

=
∑
j

αjδi,j

= αi

Note
If |v〉 is expressed wrt any orthonormal basis {|i〉}, i.e. |v〉 =

∑
i αi |i〉, then

‖ |v〉‖ =
∑
i

‖αi ‖2
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Example: The Hadamard basis

One of the infinitely many orthonormal bases for a space of dimension 2:

|+〉 = 1√
2
|0〉+ 1√

2
|1〉

|−〉 = 1√
2
|0〉− 1√

2
|1〉

Check e. g.

〈+|−〉 =
1

2
(|0〉+ |1〉, |0〉− |1〉) =

1

2

[
1
1

]
.

[
1
−1

]
=

1

2

[
1 1

] [ 1
−1

]
= 0

‖ |+〉‖ =
√
〈+|+〉 =

√
1

2
(|0〉+ |1〉, |0〉+ |1〉) =

√
1

2

[
1
1

]
.

[
1
1

]
= 1
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Bases

A basis for V †

If {|i〉} is an orthonormal basis for V , then

{〈i |}

is an orthonormal basis for V †
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Hilbert spaces

The complete picture
An Hilbert space is an inner-product space V st the metric defined by its
norm turns V into a complete metric space, i.e.any Cauchy sequence

|v1〉, |v2〉, · · ·

∀ε>0 ∃N ∀m,n>N ‖ |vm − vn〉‖≤ ε

converges
(i.e. there exists an element |s〉 in V st ∀ε>0 ∃N ∀n>N ‖ |s − vn〉‖≤ ε )

The completeness condition is trivial in finite dimensional vector spaces
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The state space postulate

Postulate 1
The state space of a quantum system is described by a unit vector in a
Hilbert space

• In practice, with finite resources, one cannot distinguish between a
continuous state space from a discrete one with arbitrarily small
minimum spacing between adjacente locations.

• One may, then, restrict to finite-dimensional (complex) Hilbert
spaces.
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The state space postulate

A quantum (binary) state is represented as a superposition, i.e. a linear
combination of vectors |0〉 and |1〉 with complex coeficients:

|φ〉 = α|0〉+ β|1〉 =

[
α
β

]
When state |φ〉 is measured (i.e. observed) one of the two basic states
|0〉, |1〉 is returned with probability

‖α‖2 and ‖β‖2

respectively.
Being probabilities, the norm squared of coefficients must satisfy

‖α‖2 + ‖β‖2 = 1

which enforces quantum states to be represented by unit vectors.
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The state space of a qubit

Global phase
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase factor e iθ, represent the same state.

Let
|v〉 = α|u〉+ β|u ′〉

‖e iθα‖2= (e iθα)(e iθα) = (e−iθα)(e iθα) = αα =‖α‖2

and similarly for β.

As the probabilities ‖α‖2 and ‖β‖2 are the only measurable quantities,
global phase has no physical meaning.

Representation redundancy

qubit state space 6= complex vector space used for representation
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The state space of a qubit

Relative phase
It is a measure of the angle between the two complex numbers.
Thus, it cannot be discarded!

Those are different states

1√
2
(|u〉+ |u ′〉) 1√

2
(|u〉− |u ′〉) 1√

2
(e iθ|u〉+ |u ′〉)

...
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The Bloch sphere

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])
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The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• Express |ψ〉 in polar form

|ψ〉 = ρ1e iϕ1 |0〉+ ρ2e iϕ2 |1〉

• Eliminate one of the four real parameters multiplying by e−iϕ1

|ψ〉 = ρ1|0〉+ ρ2e i(ϕ2−ϕ1)|1〉 = ρ1|0〉+ ρ2e iϕ|1〉

making ϕ = ϕ2 −ϕ1,

which is possible because global phase factors are physically
meaningless.
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The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• Switching back the coefficient of |1〉 to Cartesian coordinates

|ψ〉 = ρ1|0〉+ (a + bi)|1〉

the normalization constraint

‖ρ1 ‖2 + ‖a+ib‖2 = ‖ρ1 ‖2 +(a−ib)(a+ib) = ‖ρ1 ‖2 +a2 + b2 = 1

yields the equation of a unit sphere in the real tridimensional space
with Cartesian coordinates: (a, b, ρ1).
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The Bloch sphere: Representing |ψ〉 = α|0〉+ β|1〉

• The polar coordinates (ρ, θ,ϕ) of a point in the surface of a sphere
relate to Cartesian ones through the correspondence

x =ρ sin θ cosϕ

y =ρ sin θ sinϕ

z =ρ cos θ

• Recalling r = 1 (cf unit sphere),

|ψ〉 = ρ1|0〉+ (a + ib)|1〉
= cos θ|0〉+ sin θ(cosϕ+ i sinϕ)|1〉
= cos θ|0〉+ e iϕ sin θ|1〉

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1, as
suggested by

θ ′ = 0 ⇒ |ψ〉 = cos 0|0〉+ e iϕ sin 0|1〉 = |0〉

θ ′ =
π

2
⇒ |ψ〉 = cos

π

2
|0〉+ e iϕ sin

π

2
|1〉 = e iϕ|1〉 = |1〉

Note that longitude (ϕ) is irrelevant in a pole!
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The Bloch sphere
Indeed, let |ψ ′〉 be the opposite point on the sphere with polar
coordinates (1, π− θ,ϕ+ π):

|ψ ′〉 = cos (π− θ)|0〉+ e i(ϕ+π) sin (π− θ)|1〉
= − cos θ|0〉+ e iϕe iπ sin θ|1〉
= − cos θ|0〉+ e iϕ sin θ|1〉
= −|ψ〉
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The Bloch sphere

which leads to

|ψ〉 = cos
θ

2
|0〉+ e iϕ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π

The map θ
2 7→ θ is one-to-one at any point but at θ2 :

all points on the equator are mapped into a single point: the south pole.
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The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (ϕ),
and does not affect which state the arrow will collapse to, when
measured.
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The state evolution postulate

If a quantum state is a ray (i.e. a unit vector in a Hilbert space H up to
a global phase), its evolution is specified a certain kind of linear operators
U : H −→ H.

Linearity

U

∑
j

αj |vj〉

 =
∑
j

αj U(|vj〉)

just by itself has an important consequence: quantum states cannot be
cloned
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The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a〉|0〉) = |a〉|a〉 be a 2-qubit operator and |c〉 = 1√
2
(|a〉+ |b〉) for

|a〉, |b〉 orthogonal. Then,

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

As already seen, |x〉|y〉 = |xy〉 = |x〉 ⊗ |y〉
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The adjoint operator

Given an operator U : H −→ H, its adjoint U† : H† −→ H† is the unique
operator satisfying

U†〈w | (|v〉) = 〈w | (U |v〉) (1)

Note that (UV )† = V †U† because

(UV )†〈w | (|v〉) = 〈w | (UV |v〉)
= U†〈w | (V |v〉)
= V †U†〈w | (|v〉)
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The adjoint operator

Using the definition of the application of a transformation in H† to an
element of H, equation (1), boils down to an equality between inner
products:

U†〈w | (|v〉) = ((U†〈w |)†, |v〉)
= (|w〉U, |v〉)
= (|w〉,U |v〉)
= 〈w | (U |v〉)

The inner product (|w〉U, |v〉) = (|w〉,U |v〉) can be written without any
ambiguity as

〈u|U |v〉

The matrix representation of U† is the conjugate transpose of that of U

Exercise: Prove that 〈w |U |v〉 = 〈v |U†|w〉
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The state evolution postulate

Postulate 2
The evolution over time of the state of a closed quantum system is
described by a unitary operator.

The evolution is linear

U

∑
j

αj |vj〉

 =
∑
j

αj U(|vj〉)

and preserves the normalization constraint

If
∑
j

αj U(|vj〉) =
∑
j

α ′j |vj〉 then
∑
j

‖α ′j ‖2 = 1
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The state evolution postulate

Preservation of the normalization constraint means that unit length
vectors (and thus orthogonal subspaces) are mapped by U to unit length
vectors (and thus to orthogonal subspaces).

It also means that applying a transformation followed by a measurement
in the transformed basis is equivalent to a measurement followed by a
transformation.

This entails a condition on valid quantum operators: they must preserve
the inner product, i.e.

(U |v〉,U |w〉) = 〈v |U†U |w〉 = 〈v |w〉

which is the case iff U is unitary, i.e. U† = U−1:

U†U = UU† = I
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Unitarity

• Preserving the inner product means that a unitary operator maps
orthonormal bases to orthonormal bases.

• Conversely, any operator with this property is unitary.

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the jth column
is the image of U |j〉). Equivalently, rows are orthonormal (why?)
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Unitarity

Unitarity is the only constraint on quantum operators: Any unitary
matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit
(in contrast with the classical case where the only non-trivial operation
on a bit is complement.

Finally, because the inverse of a unitary matrix is also a unitary matrix, a
quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible
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Building larger states from smaller

Operator U in the no-cloning theorem acts on a 2-dimensional state, i.e.
over the composition of two qubits.

What does composition mean?

Postulate 3
The state space of a combined quantum system is the tensor product
V ⊗W of the state spaces V and W of its components.
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Composing quantum states
State spaces in a quantum system combine through tensor: ⊗

n m-dimensional vectors  a vector in mn-dimensional space

i.e. the state space of a quantum system grows exponentially with the
number of particles: cf, Feyman’s original motivation

Example

ab
c

⊗
de
f

 =



a

de
f


b

de
f


c

de
f




=



ad
ae
af
bd
be
bf
cd
ce
cf


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Composing quantum states

Tensor V ⊗W

• BV⊗W is a set of elements of the form |vi 〉 ⊗ |wj〉, for each
|vi 〉 ∈ BV , |wi 〉 ∈ BW and dim(V ⊗W) = dim(V)× dim(W)

• (|u1〉+ |u2〉)⊗ |z〉 = |u1〉 ⊗ |z〉+ |u2〉 ⊗ |z〉

• |z〉 ⊗ (|u1〉+ |u2〉) = |z〉 ⊗ |u1〉+ |z〉 ⊗ |u2〉

• (α|u〉)⊗ |z〉 = |u〉 ⊗ (α|z〉) = α(|u〉 ⊗ |z〉)

• 〈(|u2〉 ⊗ |z2〉)|(|u1〉 ⊗ |z1〉)〉 = 〈u2|u1〉〈z2|z1〉



Background: Hilbert spaces State Evolution Composition Measurement

Composing quantum states

Clearly, every element of V ⊗W can be written as

α1(|v1〉 ⊗ |w1〉) + α2(|v2〉 ⊗ |w1〉) + · · ·+ αnm(|vn〉 ⊗ |wm〉)

Example
The basis of V ⊗W , for V ,W qubits with the computational basis is

{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

Thus, the tensor of α1|0〉+ α2|1〉 and β1|0〉+ β2|1〉 is

α1β1|0〉 ⊗ |0〉 + α1β2|0〉 ⊗ |1〉 + α2β1|1〉 ⊗ |0〉 + α2β2|1〉 ⊗ |1〉

i.e., in a simplified notation,

α1β1|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉
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Bases

The computational basis for a vector space

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

corresponding to the composition of n qubits (each living in V ) is the set

{|0〉 · · · |0〉|0〉︸ ︷︷ ︸
n

, |0〉 · · · |0〉|1〉︸ ︷︷ ︸
n

, |0〉 · · · |1〉|0〉︸ ︷︷ ︸
n

, · · · |1〉 · · · |1〉|1〉︸ ︷︷ ︸
n

}

abv
=

{|0 · · · 00〉︸ ︷︷ ︸
n

, |0 · · · 01〉︸ ︷︷ ︸
n

, |0 · · · 10〉︸ ︷︷ ︸
n

, · · · |1 · · · 11〉︸ ︷︷ ︸
n

}

which may be written in a compressed (decimal) way as

{|0〉, |1〉, |2〉, |3〉, · · · |2n − 1〉}
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Bases

The computational basis for a two qubit system would be

{|0〉, |1〉, |2〉, |3〉}

with

|0〉 = |00〉 =


1
0
0
0

 |1〉 = |01〉 =


0
1
0
0

 |2〉 = |10〉 =


0
0
1
0

 |3〉 = |11〉 =


0
0
0
1


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Bases

There are of course other bases ... besides the standard one, e.g.

The Bell basis

|Φ+〉 = 1√
2
(|00〉+ |11〉)

|Φ−〉 = 1√
2
(|00〉− |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉)

|Ψ−〉 = 1√
2
(|01〉− |10〉)

Compare with the Hadamard basis for the single qubit systems
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Representing multi-qubit states

Any unit vector in a 2n Hilbert space represents a possible n-qubit state,
but for

... a certain level of redundancy

• As before, vectors that differ only in a global phase represent the
same quantum state

• but also the same phase factor in different qubits of a tensor
product represent the same state:

|u〉 ⊗ (e iφ|z〉) = e iφ(|u〉 ⊗ |z〉) = (e iφ|u〉)⊗ |z〉

Actually, phase factors in qubits of a single term of a superposition
can always be factored out into a coefficient for that term, i.e.
phase factors distribute over tensors
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Representing multi-qubit states

Representation

• Relative phases still matter (of course!)

1√
2
(|00〉+ |11〉) differs from

1√
2
(e iφ|00〉+ |11〉)

even if

1√
2
(|00〉+ |11〉) =

1√
2
(e iφ|00〉+ e iφ|11〉) =

e iφ√
2
(|00〉+ |11〉

• The complex projective space of dimension 1 (depicted in the Block
sphere) generalises to higher dimensions, although in practice
linearity makes Hilbert spaces easier to use.
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Entanglement

Most states in V ⊗W cannot be written as |u〉 ⊗ |z〉

For example, the Bell state

|Φ+〉 = 1√
2
(|00〉+ |11〉) =

1√
2
|00〉+ 1√

2
|11〉

is entangled
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Entanglement

Actually, to make |Φ+〉 equal to

(α1|0〉+β1|1〉)⊗(α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

would require that α1β2 = β1α2 = 0 which implies that either

α1α2 = 0 or β1β2 = 0

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a, a), (b, b)} ⊆ A× A

cannot be separated, i.e. written as a Cartesian product of subsets of A.
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The measurement postulate

Postulate 4
For a given orthonormal basis B = {|v1〉, |v2〉, · · ·}, a measurement of a
state space |v〉 =

∑
i αi |vi 〉 wrt B, outputs the label i with probability

‖αi ‖2 and leaves the system in state |vi 〉.

• Given a state
|v〉 =

∑
i

αi |vi 〉

the probability of collapsing to base state |vi 〉 is ‖〈vi |v〉‖2.

• Measurements are made through projectors which identify the ‘data’
(i.e. the subspace of the relevant Hilbert space where the quntum
system lives) one wants to measure.
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Outer product

• inner product 〈w |v〉: multiplying |v〉 on the left by the dual 〈w |,
yields a scalar.

• outer product |w〉〈v |: multiplies on the right, yielding an operator:

|w〉〈v | (|u〉) = |w〉〈v |u〉 = 〈v |u〉|w〉

Clearly
|v〉〈v | (|u〉) = 〈v |u〉|v〉

which projects |u〉 to the 1-dimensional subspace of H spanned by |v〉
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Projectors

Any projector P identifies in the state space V a subspace VP of all
vectors |φ〉 that are left unchanged by P, i.e. such that

P |φ〉 = |φ〉

Examples

• The identity I projects onto the whole space V .

• The zero operator projects onto the space {0} consisting only of the
zero vector.

• |v〉〈v | is the projector onto the subspace spanned by |v〉.
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Projectors

Examples

• Projector |0〉〈0| projects onto the subspace generated by |0〉, i.e.

|0〉〈0| (α|0〉+ β|1〉) = α|0〉〈0|(|0〉) + β|0〉〈0|(|1〉) = α|0〉

• Similarly, |10〉〈10| acts on a two-qubit state

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

yielding

|10〉〈10| (|v〉) = α10|10〉

and

|00〉〈00|+ |10〉〈10|(|v〉) = α00|00〉+ α10|10〉
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Projectors

A projector P : V → VP is an operator such that

P2 = P

Additionally, we require P to be Hermitian, i.e.

P = P†

Note that the combination of both properties yields

‖P |v〉‖2 = (〈v |P†)(P|v〉) = 〈v |P |v〉

Example
The probability of getting state |0〉 when measuring α|0〉+ β|1〉 with
P = |0〉〈0| is computed as

‖P |v〉‖2 = 〈v |P |v〉 = 〈v ||0〉〈0||v〉 = 〈v |0〉 〈0|v〉 = αα = ‖α‖2
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Projectors

Two projectors P,Q are orthogonal if PQ = 0.

The sum of any collection of orthogonal projectors {P1,P2, · · ·} is still a
projector (verify!).

A projector P has a decomposition if it can be written as a sum of
orthogonal projectors:

P =
∑
i

Pi

Such projectors yield measurements wrt to the corresponding
decomposition.
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Examples

• Complete measurement in the computational basis wrt to
decomposition

I =
∑
i∈2n

|i〉〈i |

in a state with n qubits.

• Incomplete measurement: e.g.∑
{i∈2n | i even}

|i〉〈i |
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Projectors

Example: measuring up to (bit equality)

V = Se ⊕ Sn

with Se the subspace generated by {|00〉, |11〉} in which the two bits are
equal, and Sn its complement. Pe and Pn, are the corresponding
projectors.

When measuring

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

with this device, yields a state in which the two bit values are equal with
probability

〈v |Pe |v〉 = (
√
‖α00 ‖2 + ‖α11 ‖2) = ‖α00 ‖2 + ‖α11 ‖2

Of course, the measurement does not determine the value of the two
bits, only whether the two bits are equal
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Projectors

Any orthonormal collection of vectors B = {|v1〉, |v2〉, · · ·} defines a
projector

P =
∑
i

|vi 〉〈vi |

If B spans the entire Hilbert space V , it forms a basis for V and P = I ,
i.e. B provides a decompostion for the identity.

Is there a standard way to provide a decomposition for P?
Yes, if P is a Hermitian operator, because of the

Spectral theorem
Any Hermitian operator on a finite Hilbert space V provides a basis for V
consisting of its eigenvectors.
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Projectors are Hermitian

Hermitian operators

• define a unique orthogonal subspace decomposition, their
eigenspace decomposition, and

• for every such decomposition, there exists a corresponding Hermitian
operator whose eigenspace decomposition coincides with it

Properties
Every eigenvalue λ with eigenvector |r〉 is real, because

λ〈r |r〉 = 〈r |λ|r〉 = 〈r | (P |r〉) = (〈r |P†) |r〉 = λ〈r |r〉
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Projectors are Hermitian

Properties
For any P Hermitian, two distinct eigenvalues have disjoint eigenspaces,
because, for any unit vector |v〉,

P |v〉 = λ|v〉 and P |v〉 = λ ′|v〉 and (λ− λ ′)|v〉 = 0

and thus λ = λ ′.

Moreover, the eigenvectors for distinct eigenvalues must be orthogonal,
because

λ〈v |w〉 = (〈v |P†) |w〉 = 〈v | (P |w〉) = µ〈v |w〉

for any pairs (λ, |v〉), (µ, |w〉) with λ 6= µ.
Thus, 〈v |w〉 = 0, because λ 6= µ, and the corresponding subspaces are
orthogonal.
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Projectors are Hermitian

Eigenspace decomposition of V for P
Any Hermitian P determines a unique decomposition for V

V = ⊕λiSλi

and any decomposition V = ⊕k
i=1Si can be realized as the eigenspace

decomposition of a Hermitian operator

P =
∑
i

λiPi

where each Pi is the projector onto Sλi
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Projectors are Hermitian

A decomposition can be specified by a Hermitian operator

• Any measurement is specified by a Hermitian operator P

• The possible outcomes of measuring a state |v〉 with P are labeled
by the eigenvalues of P

• The probability of obtaining the outcome labelled by λi is

‖Pi |v〉‖2

• The state after measurement is the normalized projection

Pi |v〉
‖Pi |v〉‖

onto the λi -eigenspace Si . Thus, the state after measurement is a
unit length eigenvector of P with eigenvalue λi
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Projectors are Hermitian

Notes

• A measurement is not modelled by the action of a Hermitian
operator on a state, but of the corresponding projectors.

• Actually, Hermitian operators are only a bookeeping trick

• A Hermitian operator uniquely specifies a subspace decomposition

• For a given subspace decomposition there are many Hermitian
operators whose eigenspace decomposition is that decomposition.
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Projectors are Hermitian

Example: Measuring a single qubit in the Hadamard basis
Operator

X = |0〉〈1|+ |1〉〈0| =

[
0 1
1 0

]
is Hermitian, with eigenvalues λ+ = 1 and λ− = −1, and |+〉, |−〉 the
corresponding eigenvectors, thus yielding the following projectors:

P+; = |+〉〈+| =
1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)

P− = |−〉〈−| =
1

2
(|0〉〈0|− |0〉〈1|− |1〉〈0|+ |1〉〈1|)
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