1 Basics

The goal of the following exercise is to develop mathematical intuition, helpful in quantum computation.

1. Consider the following matrices:

Consider the following matrices:
$$Id = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}; Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}; Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}; H = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Determine each of the following:

- (a) $Y \cdot S$
- (b) *S* · *S*
- (c) $X \cdot X$
- (d) $H \cdot H$
- (e) $H \otimes Id$
- (f) $Id \otimes X$
- (g) $H \cdot Z \cdot H$
- (h) $H \cdot X \cdot H$
- (i) $Id \otimes (H \cdot X \cdot H)$
- (j) $Id \otimes (H \cdot Z \cdot H)$

2 Introduction to quantum computation

- 1. If possible associate each of the following circuits to the letters of exercise 1 section 1.
 - (a) -Y S -
 - (b) $-\overline{X}$
 - (c) -HHH
 - (d) -Id
 - (e) -X
 - (f) $-\overline{Z}$

(g)
$$-H-Z-H-$$

(h)
$$-H-X-H$$

(i)
$$-Id$$

$$(J) - Id - X - X$$

(i)
$$-H$$
 $-Id$ $-$

2. Recall dirac's notation T10.

Write each ψ in dirac's notation.