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Complex Numbers[1]



Imaginary Numbers

X2 = —1

X is v/—1this number does not exist in the real numbers.

So we will call it imaginary and denote it .

2=—-10ri=+-1



Imaginary Numbers - Exercise 1



Complex Numbers - definition

A complex number is an expression:

c=a+bxi=a+bi

where a, b are two real numbers. a is the real part of c and b is its
imaginary part.

The set of all complex numbers is denoted C.



Complex Conjugates

c=a-++ bi

The conjute of ¢, is denoted C:

Modulus squared:

cxC=|c]?



Complex Number - polar representation

c=a-+bi

p=+/(a?+ b?) a = pcos(6)

b
9:tan_1(a) b = psin(6)

¢ = p(cos(f) + isin(h)) = pe'

A complex number ¢ is a magnitude |c| and a phase 6.

"More information about complex numbers and their properties in [1].



complex Numbers - Exercise 2

Gate S is a phase gate.

i

It does nothing to state |0). When the initial state is |1) the gate
applies a rotation giving by the complex number I.

What is the phase of gate S?



Complex Vector Spaces[1]



Complex Vector Spaces - definition

and 0 = [O .
0

A complex vector space is a nonempty set V, whose elements we
shall call vectors, with three operations:

e+fi
g+ hi

a+ bi
c+di

LetV =

’

. (a+ bi)+ (e+fi)
Addition V+ W= . ;
(c+di)+ (g + hi)
. —a — bi
N -V =
egation [c di
S _|s(a+bi)
Scalar Multiplication sV = e ==l

and a distinguished element called the zero vector 0 € V in the set.



Complex Vector Spaces - definition

These operations and zero must satisfy the following properties: for
allvV, W, X e Vand forallc, ¢, ¢; € C,

1. Commutative of addition: V4+W =W+ V

Associative of addition: (V4+ W)+ X =V + (W+X)
Zero is an additive identity: V40 =V

Every vector has an inverse: V+ (=V) =0=(=V)+ V
Scalar multiplication has a unit: 1- V=V

v G & @ N

Scalar multiplication respects complex multiplication:

G-(-V)=(ax¢c)V

7. Scalar multiplication distributes over addition:
c-(V+W)y=c-V+c-W

8. Scalar multiplication distributes over complex addition:

(cr+c) V=c-V+c -V



Complex Vector Space

In the previous definitions the examples were given with V,W € C? (a
specific type vector).

This properties work with any V, W € C"
And inany M € C™*",

Co,0 Co,1 - Ch—1
C1,0 Cin e Ci,n—1

Cm—1,0 Cm—11 --- Cm—1n—1



Complex Vector Space - C™*"

A € C™" is matrix with j rows and k columns denoted by A[j, k] or ¢ .
When n =1 — vectors can be special types of matrices.

When n = m — This has more operations and more structure than
just a complex vector space.

- transpose - AT[j, k] = A[R, j]
- conjugate - A[j, k] = A[j, k]
- adjoint or dagger - At = (&') = (A1) or At [j, K] = A[k,J]

1



Complex Vector Space - A7, A and Af

Transpose is idempotent (AT)" = A

Transpose respects addition (A + B)" = AT + BT
Transpose respects scalar multiplication (c-A)" = c- AT
Conjugate is idempotent A=A

Conjugate respects additionA+B=A+B
Conjugate respects scalar multiplication ¢- A =
Adjoint is idempotent (AT)T = A

Adjoint respects addition (A + B)f = AT + Bf

A

O P N o U s W N
ol

Adjoint relates to scalar multiplication (c-A)f =¢- Af



Complex Vector Space - Matrix multiplication

Given A e C™"and Be C"™P, A-B e C™P |s defined as:

n—1

(A-B)lj,kl =Y _(A[j, h] x B[h, k1)

h=0

a b| |e f| _ [|(axe+bxg) (axf+bxh)
c d|l |g h| |(cxe+dxg) (cxf+dxh)



Complex Vector Space - Exercise 3

BdRd el e
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Complex Vector Space - Identity matrix

10 0

0 1 0
Idn = .

0 O 1

The common notation of the identity matrix : Id, | or 1.



Complex Vector Space - Matrix Multiplication Properties

1. Matrix multiplication is associative (A-B)-C=A-(B- ()

2. Matrix multiplication has I, asa unitl,-A=A=A-1,

3. Matrix multiplication distributes over addition
A-(B+C)=(A-B)+(A-0)

4. Matrix multiplication respects scalar multiplication
c-(A-B)=(c-A)-B=A-(c-B)

5. Matrix multiplication relates to the transpose (A - B)" = BT - AT

6. Matrix multiplication respects the conjugate A-B=A-B

7. Matrix multiplication relates to the adjoint (A - B)T = BT . AT

commutativity is not a basic property of matrix multiplication
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Complex Vector Space - Matrix Multiplication

In quantum computation, matrix multiplication corresponds to
serially wired gates.

—XHZ =X 2

Matrix multiplication can also be used to represent the action of a

gate U in an arbitrary quantum state |¢i,) = [Z]

|%in) [Wout)

Ultin) = U o 8] = o)



Complex Vector Space - Linear Maps

When a matrix acts on a vector space, it is a linear map.
An operator is a linear map from a complex vector space to itself.

If F: C" — C" is an operator on C" and A is a matrix n x n such that
for all V we have F(V) = A -V, then F is represented by A.

Several different matrices might represent the same operator.



Complex Vector Spaces - Basis

Let V be a complex vector space. V € V is a linear combination of
the vectors Vy, Vi,..., Vo_1 in V if V can be written as

V=co-Vo+C-Vi+ ...+ Coeq- Viq

for some ¢y, ¢4, ..., Ch_q in C.

Aset {Vo, Vi, ..., Vo_1} of vectors in V is called linearly independent if
0=¢Co-Vo+C1-Vy+ ... +Chq- Vg

impliesthatco=c¢c;=...=c,_1=0.

Aset B = {Vo,Vy,...,V,_1} C V of vectors is called a basis of complex
vectors V if every, V € V can be written as a linear combination of
vectors from B and B is linear independent.
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Complex Vector Spaces - Exercise 4

In quantum computation, the most used bases are |0) and |1).
Exercise

Write a qubit state as linear combination of these basis.
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Complex Vector Spaces - Inner Product

An inner product on a complex vector space V is a function
(—,—):VxV-=C

that satisfies the following conditions for all V, V4, V5, and V53 in V and
foraceC:

1. Nondegenerate (exception V=0, (V,V) = 0): (V,V) >0
2. Respects addition: (V4 + V,,V3) = (V4, V3) + (V2, V3) ;
(Va, Vo + V3) = (Vq, V2) + (V4, V3)
3. Respects scalar multiplication: (c- V4, V5) = ¢ x (V;,V5);
Vi, c-Vy =T x (g, V)
4. Skew symmetric: (Vq, Vo) = (V5, V4)
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Complex Vector Space - Inner Product

In C" the inner product is : (Vq,V,) = VI Vs

In C"™™ the inner product of matrices is: (A, B) = Trace(A' - B)
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Complex Vector Space - Orthogonal

Two vectors Vy and V; in an inner product space V are orthogonal if
(Vqi,V) =0
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Complex Vector Space - Norm and normalization

Norm:
IV = V{VIV)

Nomalization:
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Complex Vector Space - Kronecker delta function

A basis B = Vg, Vi, ...,V,_; for an inner product space V is called an
orthogonal basis if the vectors are pairwise orthogonal to each other,
i.e, j # kRimplies (V;, V) = 0.

An orthogonal basis is called an orthonormal basis if every vector in
the basis is of norm 1, i.e,,

1,iff = k

<WW%_M_{QW#k

dj  is called the Kronecker delta function
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Complex Vector Space - Hilbert Space

Hilbert Space is a complex inner product space that is complete.

A finite-dimensional complex vector space with an inner product is
an Hilbert Space.
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Complex Vector Space - Exercise 5

1. Proof that the quantum state |0) is orthogonal to [1).
2. Proof that the quantum state |+) is orthogonal to |—).
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Complex Vector Spaces - Unitary Matrix

A matrix U is unitary if

u-ut=ut-u=1d
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Complex Vector Spaces - Tensor Product

|

Qo,0
a1,0

a b b
01 Jnd B = |P00 0,1
(R bio  bia
boo  bo
do,o0
bio by
AR B =
boo bon
1,0
bio  bis
Q0,0 X bo,o Qo0 X bon
Qo,0 X b1,0 Qo,0 X bm
a1,0 X bo,o  A1,0 X bo;
Q1,0 X b1,o Q1,0 X bm

Qo X bopo
Qoj X big
a11 X b1,0
a1 X b1,0
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Complex Vector Spaces - Tensor Product

In quantum computation, the tensor product corresponds to parallel
gates:

SEiaE -

X®X

—x= T

Two vectors that can be written as a tensor are separable:

|0) ®[0) = |00) =

O O O —
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Quantum Computation Basics



Quantum Computing Basics

A quantum arbitrary state:

W) = al0) + 5[1)

A system of n-qubits:

2" 1
> alaian) =l g
i=0

Figure 1: Bloch Sphere
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Quantum computing Basics

1 1 Quantum gates are reversible
Hadamard H [ ] gates responsible for change in
. the qubit state.
0 Are described by a unitary matrix

U:

Pauli-X

UTU =1, Ut is the adjoint of U
Pauli-Z

170
Phase [O 1.1 CNOT —eo—

VAR

o O O -
o O - O
- O O O
o -~ O O

Pauli-Y -
0

o[y
\'
| — |
(@) —
®
o<
_ 1
€

Table 2: multiqubit gate
Table 1: single qubit gates
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Important notes on Quantum

- Besides the classics (0 and 1) states, the qubits can also be in
any superposition state.

- In quantum computation, entanglement is created with
multiqubit gates (like the CNOT).

- The measurement collapses the quantum state.

- A qubit’ state cannot be copied!
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