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Complex Numbers[1]



Imaginary Numbers

x2 = −1

X is
√
−1 this number does not exist in the real numbers.

So we will call it imaginary and denote it i.

i2 = −1 or i =
√
−1
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Imaginary Numbers - Exercise 1

1. i25
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Complex Numbers - definition

A complex number is an expression:

c = a+ b× i = a+ bi

where a,b are two real numbers. a is the real part of c and b is its
imaginary part.

The set of all complex numbers is denoted C.
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Complex Conjugates

c = a+ bi

The conjute of c, is denoted c:

c = a− bi

Modulus squared:

c× c = |c|2
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Complex Number - polar representation

c = a+ bi

ρ =
√

(a2 + b2)

θ = tan−1(
b
a )

a = ρ cos(θ)

b = ρ sin(θ)

c = ρ(cos(θ) + i sin(θ)) = ρeiθ

A complex number c is a magnitude |c| and a phase θ1.

1More information about complex numbers and their properties in [1].
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complex Numbers - Exercise 2

Gate S is a phase gate.

[
1 0
0 i

]

It does nothing to state |0⟩. When the initial state is |1⟩ the gate
applies a rotation giving by the complex number i.

What is the phase of gate S?
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Complex Vector Spaces[1]



Complex Vector Spaces - definition

Let V =

[
a+ bi
c+ di

]
, W =

[
e+ fi
g+ hi

]
and 0 =

[
0
0

]
.

A complex vector space is a nonempty set V, whose elements we
shall call vectors, with three operations:

Addition V + W =
[
(a+ bi) + (e+ fi)
(c+ di) + (g+ hi)

]

Negation -V =
[
−a− bi
−c− di

]

Scalar Multiplication s ·V =

[
s(a+ bi)
s(c+ di)

]
and a distinguished element called the zero vector 0 ∈ V in the set.
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Complex Vector Spaces - definition

These operations and zero must satisfy the following properties: for
all V, W, X ∈ V and for all c, c1, c2 ∈ C,

1. Commutative of addition: V+W = W+ V
2. Associative of addition: (V+W) + X = V+ (W+ X)
3. Zero is an additive identity: V+ 0 = V
4. Every vector has an inverse: V+ (−V) = 0 = (−V) + V
5. Scalar multiplication has a unit: 1 · V = V
6. Scalar multiplication respects complex multiplication:
c1 · (c2 · V) = (c1 × c2) · V

7. Scalar multiplication distributes over addition:
c · (V+W) = c · V+ c ·W

8. Scalar multiplication distributes over complex addition:
(c1 + c2) · V = c1 · V+ c2 · V
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Complex Vector Space

In the previous definitions the examples were given with V,W ∈ C2 (a
specific type vector).

This properties work with any V,W ∈ Cn

And in any M ∈ Cm×n.

M =


c0,0 c0,1 . . . cn−1
c1,0 c1,1 . . . c1,n−1
...

... . . . ...
cm−1,0 cm−1,1 . . . cm−1,n−1
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Complex Vector Space - Cm×n

A ∈ Cm×n is matrix with j rows and k columns denoted by A[j, k] or cj,k.

When n = 1→ vectors can be special types of matrices.

When n = m→ This has more operations and more structure than
just a complex vector space.

• transpose - AT[j, k] = A[k, j]
• conjugate - A[j, k] = A[j, k]
• adjoint or dagger - A† = (AT) = (AT) or A † [j, k] = A[k, j]
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Complex Vector Space - AT, A and A†

1. Transpose is idempotent (AT)T = A
2. Transpose respects addition (A+ B)T = AT + BT

3. Transpose respects scalar multiplication (c · A)T = c · AT

4. Conjugate is idempotent A = A
5. Conjugate respects addition A+ B = A+ B
6. Conjugate respects scalar multiplication c · A = c · A
7. Adjoint is idempotent (A†)† = A
8. Adjoint respects addition (A+ B)† = A† + B†

9. Adjoint relates to scalar multiplication (c · A)† = c · A†
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Complex Vector Space - Matrix multiplication

Given A ∈ Cm×n and B ∈ Cn×p, A · B ∈ Cm×p is defined as :

(A · B)[j, k] =
n−1∑
h=0

(A[j,h]× B[h, k])

[
a b
c d

]
·

[
e f
g h

]
=

[
(a× e+ b× g) (a× f+ b× h)
(c× e+ d× g) (c× f+ d× h)

]
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Complex Vector Space - Exercise 3

1.
[
0 1
2 0

]
·

[
3 4
10 5

]
2. 1√

2

[
1 1
1 −1

]
·
[
0 1

]T
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Complex Vector Space - Identity matrix

Idn =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


The common notation of the identity matrix : Id, I or 1.
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Complex Vector Space - Matrix Multiplication Properties

1. Matrix multiplication is associative (A · B) · C = A · (B · C)
2. Matrix multiplication has In as a unit In · A = A = A · In
3. Matrix multiplication distributes over addition
A · (B+ C) = (A · B) + (A · C)

4. Matrix multiplication respects scalar multiplication
c · (A · B) = (c · A) · B = A · (c · B)

5. Matrix multiplication relates to the transpose (A · B)T = BT · AT

6. Matrix multiplication respects the conjugate A · B = A · B
7. Matrix multiplication relates to the adjoint (A · B)† = B† · A†

commutativity is not a basic property of matrix multiplication
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Complex Vector Space - Matrix Multiplication

In quantum computation, matrix multiplication corresponds to
serially wired gates.

X Z = X · Z

Matrix multiplication can also be used to represent the action of a

gate U in an arbitrary quantum state |ψin⟩ =

[
α

β

]

|ψin⟩ U |ψout⟩

U|ψin⟩ = U
[
α β

]T
= |ψout⟩
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Complex Vector Space - Linear Maps

When a matrix acts on a vector space, it is a linear map.

An operator is a linear map from a complex vector space to itself.

If F : Cn → Cn is an operator on Cn and A is a matrix n× n such that
for all V we have F(V) = A · V, then F is represented by A.

Several different matrices might represent the same operator.
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Complex Vector Spaces - Basis

Let V be a complex vector space. V ∈ V is a linear combination of
the vectors V0, V1,..., Vn−1 in V if V can be written as

V = c0 · V0 + c1 · V1 + ...+ cn−1 · Vn−1

for some c0, c1, ..., cn−1 in C.

A set {V0, V1, ..., Vn−1} of vectors in V is called linearly independent if

0 = c0 · V0 + c1 · V1 + ...+ cn−1 · Vn−1

implies that c0 = c1 = ... = cn−1 = 0.

A set B = {V0, V1, ..., Vn−1} ⊆ V of vectors is called a basis of complex
vectors V if every, V ∈ V can be written as a linear combination of
vectors from B and B is linear independent.
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Complex Vector Spaces - Exercise 4

In quantum computation, the most used bases are |0⟩ and |1⟩.

Exercise

Write a qubit state as linear combination of these basis.
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Complex Vector Spaces - Inner Product

An inner product on a complex vector space V is a function

⟨−,−⟩ : V× V → C

that satisfies the following conditions for all V, V1, V2, and V3 in V and
for a c ∈ C:

1. Nondegenerate (exception V = 0, ⟨V, V⟩ = 0): ⟨V, V⟩ ⩾ 0
2. Respects addition: ⟨V1 + V2, V3⟩ = ⟨V1, V3⟩+ ⟨V2, V3⟩ ;

⟨V1, V2 + V3⟩ = ⟨V1, V2⟩+ ⟨V1, V3⟩
3. Respects scalar multiplication: ⟨c · V1, V2⟩ = c× ⟨V1, V2⟩ ;
V1, c · V2 = c× ⟨V1, V2⟩

4. Skew symmetric: ⟨V1, V2⟩ = ⟨V2, V1⟩
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Complex Vector Space - Inner Product

In Cn the inner product is : ⟨V1, V2⟩ = V†1 · V2
In Cn×m the inner product of matrices is: ⟨A,B⟩ = Trace(A† · B)
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Complex Vector Space - Orthogonal

Two vectors V1 and V2 in an inner product space V are orthogonal if
⟨V1, V2⟩ = 0
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Complex Vector Space - Norm and normalization

Norm:
||V⟩| =

√
⟨V|V⟩

Nomalization:
|V⟩
||V⟩|
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Complex Vector Space - Kronecker delta function

A basis B = V0, V1, ..., Vn−1 for an inner product space V is called an
orthogonal basis if the vectors are pairwise orthogonal to each other,
i.e., j ̸= k implies ⟨Vj, Vk⟩ = 0.

An orthogonal basis is called an orthonormal basis if every vector in
the basis is of norm 1, i.e.,

⟨Vj|Vk⟩ = δj,k =

{
1, ifj = k
0, ifi ̸= k

δj,k is called the Kronecker delta function
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Complex Vector Space - Hilbert Space

Hilbert Space is a complex inner product space that is complete.

A finite-dimensional complex vector space with an inner product is
an Hilbert Space.
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Complex Vector Space - Exercise 5

1. Proof that the quantum state |0⟩ is orthogonal to |1⟩.
2. Proof that the quantum state |+⟩ is orthogonal to |−⟩.
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Complex Vector Spaces - Unitary Matrix

A matrix U is unitary if

U · U† = U† · U = Id
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Complex Vector Spaces - Tensor Product

A =

[
a0,0 a0,1
a1,0 a1,1

]
and B =

[
b0,0 b0,1
b1,0 b1,1

]

A⊗ B =


a0,0

[
b0,0 b0,1
b1,0 b1,1

]
a0,1

[
b0,0 b0,1
b1,0 b1,1

]

a1,0

[
b0,0 b0,1
b1,0 b1,1

]
a1,1

[
b0,0 b0,1
b1,0 b1,1

]
 =


a0,0 × b0,0 a0,0 × b0,1 a0,1 × b0,0 a0,1 × b0,1
a0,0 × b1,0 a0,0 × b1,1 a0,1 × b1,0 a0,1 × b1,1
a1,0 × b0,0 a1,0 × b0,1 a1,1 × b1,0 a1,1 × b0,1
a1,0 × b1,0 a1,0 × b1,1 a1,1 × b1,0 a1,1 × b1,1
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Complex Vector Spaces - Tensor Product

In quantum computation, the tensor product corresponds to parallel
gates:

X

X

=
X⊗ X

Two vectors that can be written as a tensor are separable:

|0⟩ ⊗ |0⟩ = |00⟩ =


1
0
0
0



30



Quantum Computation Basics



Quantum Computing Basics

A quantum arbitrary state:

|Ψ⟩ = α|0⟩+ β|1⟩

A system of n-qubits:

∑
q1,...,qn∈{0,1}n

cq1...qn |q1...qn⟩ =
2n−1∑
i=0

ci|i⟩

Figure 1: Bloch Sphere
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Quantum computing Basics

Hadamard H 1√
2

[
1 1
1 −1

]

Pauli-X X

[
0 1
1 0

]

Pauli-Y Y

[
0 −i
i 0

]

Pauli-Z Z

[
1 0
0 −1

]

Phase S

[
1 0
0 i

]
π
8 T

[
1 0
0 eiπ4

]
Table 1: single qubit gates

Quantum gates are reversible
gates responsible for change in
the qubit state.
Are described by a unitary matrix
U:

U†U = 1,U† is the adjoint of U

CNOT •


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


Table 2: multiqubit gate
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Important notes on Quantum

• Besides the classics (0 and 1) states, the qubits can also be in
any superposition state.

• In quantum computation, entanglement is created with
multiqubit gates (like the CNOT).

• The measurement collapses the quantum state.
• A qubit’ state cannot be copied!
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