Quantum Systems

(Lecture 5: Quantum algorithms — first examples and techniques)

Luís Soares Barbosa

Universidade do Minho

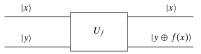
<ロト <四ト <注入 <注下 <注下 <

Universidade do Minho

The Deutsch problem

Is $f : \mathbf{2} \longrightarrow \mathbf{2}$ constant, with a unique evaluation?

Oracle



where \oplus stands for exclusive or, i.e. addition module 2.

- The oracle takes input |x
 angle|y
 angle to $|x
 angle|y\oplus f(x)
 angle$
- Fixing y = 0 the output is $|x\rangle |f(x)\rangle$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Deutsch problem

Preparing the first qubit as $|x\rangle$ is the (quantum version of) input x:

 $\begin{array}{rcl} |0\rangle|0\rangle &\mapsto & |0\rangle|f(0)\rangle \\ |1\rangle|0\rangle &\mapsto & |1\rangle|f(1)\rangle \end{array}$

But in the quantum world, one can better: input a superposition of $|0\rangle$ and $|1\rangle$ to get

$$|\frac{|0\rangle+|1\rangle}{\sqrt{2}},0\rangle = \left(\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle\right)|0\rangle = \frac{1}{\sqrt{2}}|0\rangle|0\rangle+\frac{1}{\sqrt{2}}|1\rangle|0\rangle \mapsto \cdots$$

. . .

The Deutsch problem

$$\begin{split} U_f\left(\frac{1}{\sqrt{2}}|0\rangle \left|0\right\rangle + \frac{1}{\sqrt{2}}|1\rangle \left|0\right\rangle\right) &= \frac{1}{\sqrt{2}}U_f|0\rangle |0\rangle + \frac{1}{\sqrt{2}}U_f|1\rangle |0\rangle \\ &= \frac{1}{\sqrt{2}}|0\rangle |0 \oplus f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle |0 \oplus f1\rangle \\ &= \frac{1}{\sqrt{2}}|0\rangle |f(0)\rangle + \frac{1}{\sqrt{2}}|1\rangle |f1\rangle \end{split}$$

- The value of f on both possible inputs (0 and 1) was computed simultaneously in superposition
- Double evaluation the bottleneck in a classical solution was avoided by superposition

Is such quantum parallelism useful?

NO

Although both values have been computed simultaneously, only one of them is retrieved upon measurement in the computational basis: Actually, 0 or 1 will be retrieved with identical probability (why?).

YES

The Deutsch problem is not interested on the concrete values f may take, but on a global property of f: whether it is constant or not, technically on the value of

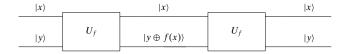
 $f(0) \oplus f(1)$

The Deutsch algorithm explores another quantum resource — interference — to obtain that global information on f

Is the oracle a quantum gate?

First of all, one must prove that

• The oracle is a unitary, i.e. reversible gate



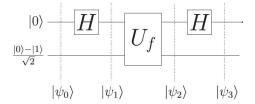
 $|x\rangle|(y\oplus f(x))\oplus f(x)\rangle \ = \ |x\rangle|y\oplus (f(x)\oplus f(x))\rangle \ = \ |x\rangle|y\oplus 0\rangle \ = \ |x\rangle|y\rangle$

イロト 不得 トイヨト イヨト

æ

Deutsch algorithm

Idea: Avoid double evaluation by superposition and interference



The circuit computes:

$$|\phi_1
angle \ = \ rac{|0
angle+|1
angle}{\sqrt{2}} \ rac{|0
angle-|1
angle}{\sqrt{2}} \ = \ rac{|00
angle-|01
angle+|10
angle-|11
angle}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Deutsch algorithm

After the oracle, at $\phi_2,$ one obtains

$$|x\rangle \frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}} = \begin{cases} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}} & \Leftarrow f(x) = 0\\ |x\rangle \frac{|1\rangle - |0\rangle}{\sqrt{2}} & \Leftarrow f(x) = 1 \end{cases}$$
$$= (-1)^{f(x)} |x\rangle \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

For $|x\rangle$ a superposition:

$$\begin{aligned} |\varphi_{2}\rangle &= \left(\frac{(-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \\ &= \begin{cases} (\underline{+}1) \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ constant} \\ (\underline{+}1) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) & \Leftarrow f \text{ not constant} \end{cases} \end{aligned}$$

The technique: phase kick-back

The Deutsch-Jozsa Algorithm

Deutsch algorithm

$$\begin{aligned} \sigma_{3} \rangle &= H | \sigma_{2} \rangle \\ &= \begin{cases} (\underline{+}1) | 0 \rangle \begin{pmatrix} \underline{|0\rangle - | 1 \rangle} \\ \sqrt{2} \end{pmatrix} & \Leftarrow f \text{ constant} \\ (\underline{+}1) | 1 \rangle \begin{pmatrix} \underline{|0\rangle - | 1 \rangle} \\ \sqrt{2} \end{pmatrix} & \Leftarrow f \text{ not constant} \end{cases} \end{aligned}$$

To answer the original problem is now enough to measure the first qubit: if it is in state $|0\rangle$, then f is constant.

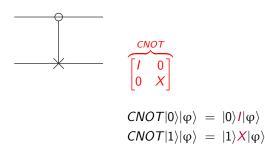
Note

As the initial state in the second qubit can be prepared as $H|1\rangle$, the circuit is equivalent to

$(H \otimes I) U_f (H \otimes H)(|01\rangle)$

The Deutsch-Jozsa Algorithm

Recalling the CNOT gate



Recall its effect when applied in the Hadamard basis, e.g.

$$\left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \ \mapsto \ \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right)$$

The phase jumps, or is kicked back, from the second to the first qubit.

The phase 'kick back' technique

This happens because $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an eigenvector of

- X (with $\lambda = -1$) and of I (with $\lambda = 1$)
- and, thus, $X \frac{|0\rangle |1\rangle}{\sqrt{2}} = -1 \frac{|0\rangle |1\rangle}{\sqrt{2}}$ and $I \frac{|0\rangle |1\rangle}{\sqrt{2}} = 1 \frac{|0\rangle |1\rangle}{\sqrt{2}}$

Thus,

$$\begin{aligned} \mathcal{CNOT} \left| 1 \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) &= \left| 1 \right\rangle \left(\mathbf{X} \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \right) \\ &= \left| 1 \right\rangle \left(\left(-1 \right) \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \right) \\ &= -\left| 1 \right\rangle \left(\frac{\left| 0 \right\rangle - \left| 1 \right\rangle}{\sqrt{2}} \right) \end{aligned}$$

while
$$CNOT \ket{0} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}} \right) = \ket{0} \left(\frac{\ket{0} - \ket{1}}{\sqrt{2}} \right)$$

The phase 'kick back' technique

The phase has been kicked back to the first (control) qubit:

$$CNOT \left|i\right\rangle \left(\frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}\right) = (-1)^{i} \left|i\right\rangle \left(\frac{\left|0\right\rangle - \left|1\right\rangle}{\sqrt{2}}\right)$$

for $i \in \{0,1\}$, yielding, when the first (control) qubit is in a superposition of $|0\rangle$ and $|1\rangle$,

$$\textit{CNOT} \left(\alpha | 0 \rangle + \beta | 1 \rangle \right) \left(\frac{| 0 \rangle - | 1 \rangle}{\sqrt{2}} \right) \; = \; \left(\alpha | 0 \rangle - \beta | 1 \rangle \right) \left(\frac{| 0 \rangle - | 1 \rangle}{\sqrt{2}} \right)$$

The phase 'kick back' technique

Input an eigenvector to the target qubit of operator $\widehat{U}_{f(x)}$, and associate the eigenvalue with the state of the control qubit

・ロト ・ 日・ ・ 田・ ・ 日・ うらぐ

Phase 'kick back' in the Deutsch algorithm

Instead of *CNOT*, an oracle U_f for an arbitrary Boolean function $f : \mathbf{2} \longrightarrow \mathbf{2}$, presented as a controlled-gate, i.e. a 1-gate $\widehat{U}_{f(x)}$ acting on the second qubit and controlled by the state $|x\rangle$ of the first one, mapping

 $|y\rangle \mapsto |y \oplus f(x)\rangle$

The critical issue is that state $\frac{|0\rangle-|1\rangle}{\sqrt{2}}$ is an eigenvector of $\widehat{U}_{f(x)}$

・ロト・西ト・ヨト・ヨト しゅうへん

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Phase 'kick back' in the Deutsch algorithm

$$\begin{aligned} U_{f} |x\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) &= \left(\frac{|x\rangle U_{f} |0\rangle - |x\rangle U_{f} |1\rangle}{\sqrt{2}}\right) \\ &= \left(\frac{|x\rangle|0 \oplus f(x)\rangle - |x\rangle|1 \oplus f(x)\rangle}{\sqrt{2}}\right) \\ &= |x\rangle \underbrace{\left(\frac{|0 \oplus f(x)\rangle - |1 \oplus f(x)\rangle}{\sqrt{2}}\right)}_{\xi} \end{aligned}$$

Clearly,

$$\xi = (-1)^{f(x)} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}} \right)$$

Thus, when the control qubit is in a superposition of $|0\rangle$ and $|1\rangle$,

$$U_{f}(\alpha|0\rangle+\beta|1\rangle)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) = \left((-1)^{f(0)}\alpha|0\rangle+(-1)^{f(1)}\beta|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Generalizing Deutsch ...

Generalizing Deutsch's algorithm to functions whose domain is an

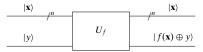
initial segment n of \mathbb{N} encoded into a binary string

i.e. the set of natural numbers from 0 to $\mathbf{2}^n - 1$

The Deutsch-Jozsa problem

Assuming $f: 2^n \longrightarrow 2$ is either balanced or constant, determine which is the case with a unique evaluation

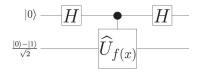
The oracle



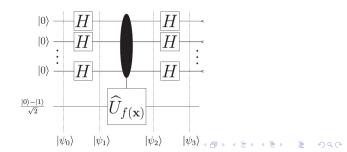
The Deutsch-Jozsa Algorithm

Generalizing Deutsch ...

The Deutsch circuit



The Deutsch-Joza circuit



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Deutsch-Jozsa Algorithm

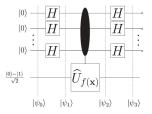
The crucial step is to compute $H^{\otimes n}$ over *n* qubits:

$$\begin{aligned} H^{\otimes n} |0\rangle^{\otimes n} &= \left(\frac{1}{\sqrt{2}}\right)^n \underbrace{(|0\rangle + |1\rangle) \otimes \cdots \otimes (|0\rangle + |1\rangle)}_n \\ &= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \mathbf{2}^n} |\mathbf{x}\rangle \end{aligned}$$

Thus

$$\begin{split} \phi_{0} &= |0\rangle^{\otimes n} \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \\ \phi_{1} &= \frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in \mathbf{2}^{n}} |\mathbf{x}\rangle \left(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\right) \end{split}$$

The Deutsch-Jozsa Algorithm



The phase kick-back effect

$$\begin{split} \boldsymbol{\varphi_2} &= \frac{1}{\sqrt{2^n}} \boldsymbol{U_f} \left(\sum_{\mathbf{x} \in 2^n} |\mathbf{x}\rangle \left(\frac{|\mathbf{0}\rangle - |\mathbf{1}\rangle}{\sqrt{2}} \right) \right) \\ &= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in 2^n} (-1)^{f(\mathbf{x})} |\mathbf{x}\rangle \left(\frac{|\mathbf{0}\rangle - |\mathbf{1}\rangle}{\sqrt{2}} \right) \end{split}$$

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Deutsch-Jozsa Algorithm

Finally, we have to compute the last stage of H^{\otimes} application.

$$H|x\rangle = \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x}|1\rangle)$$

$$\begin{split} H^{\otimes} |\mathbf{x}\rangle &= H^{\otimes}(|x_1\rangle, \cdots, |x_n\rangle) \\ &= H|x_1\rangle \otimes \cdots \otimes H|x_n\rangle \\ &= \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_1}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_2}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + (-1)^{x_n}|1\rangle) \\ &= \frac{1}{\sqrt{2^n}} \sum_{z_1 z_2 \cdots z_n \in \mathbf{2}^n} (-1)^{x_1 z_1 + x_2 z_2 + \cdots + x_n z_n} |z_1\rangle |z_2\rangle \cdots |z_n\rangle \\ &= \frac{1}{\sqrt{2^n}} \sum_{\mathbf{z} \in \mathbf{2}^n} (-1)^{\mathbf{x} \cdot \mathbf{z}} |\mathbf{z}\rangle \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Deutsch-Jozsa Algorithm

$$\begin{split} |\varphi_{3}\rangle \ &= \ \frac{\sum_{\mathbf{x} \in \{0,1\}^{n}} (-1)^{f(\mathbf{x})} \sum_{\mathbf{z} \in \{0,1\}^{n}} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \ \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \ \frac{\sum_{\mathbf{x}, \mathbf{z} \in \{0,1\}^{n}} (-1)^{f(\mathbf{x})} (-1)^{\mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \ \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\ &= \ \frac{\sum_{\mathbf{x}, \mathbf{z} \in \{0,1\}^{n}} (-1)^{f(\mathbf{x}) + \mathbf{z}.\mathbf{x}} |\mathbf{z}\rangle}{2^{n}} \ \frac{|0\rangle - |1\rangle}{\sqrt{2}} \end{split}$$

Note that the amplitude for state $|0\rangle^{\otimes}$ is

$$\frac{1}{2^n}\sum_{\mathbf{x}\in\mathbf{2}^n}(-1)^{f(x)}$$

The Deutsch-Jozsa Algorithm

Analysis

$$\begin{array}{c|c} f \text{ is constant at } 1 & \rightsquigarrow & \frac{-(2^n)|\mathbf{0}\rangle}{2^n} &= & -|\mathbf{0}\rangle \\ \hline f \text{ is constant at } 0 & \rightsquigarrow & \frac{(2^n)|\mathbf{0}\rangle}{2^n} &= & |\mathbf{0}\rangle \end{array}$$

As $|\phi_3\rangle$ has unit length, all other amplitudes must be 0 and the top qubits collapse to $|0\rangle$

$$f \text{ is balanced} \quad \rightsquigarrow \quad \frac{0|\mathbf{0}\rangle}{2^n} = 0|\mathbf{0}\rangle$$

because half of the x will cancel the other half. The top qubits collapse to some other basis state, as dkb|0 \rangle has zero amplitude

The top qubits collapse to $|0\rangle$ iff f is constant

Quantum Algorithms

The Deutsch-Jozsa algorithm

Exponential speed up: f was evaluated once rather than $2^n - 1$ times

Classes of quantum algorithm

- Based on the quantum Fourier transform: The Deutsch-Jozsa is a simple example; Phase estimation; Shor algorithm; etc.
- Based on amplitude amplification: Variants of Grover algorithm for search processes.
- Quantum simulation.