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The circuit model

Classical reversible circuits (which can simulate any non-reversible one
with modest overhead) generalise to quantum circuits where

e |ogical qubits are carried along wires,

e quantum gates, corresponding to unitary transformations, act on
them,

e and measurements of a quantum state |[d) = ) . «;|i)result in a
state |/), with probability given by the norm squared of its
amplitude, | «;||?, together with a classical label i indicating which
outcome was obtained.
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The circuit model

Quantum gates

A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation

U,
@




Quantum gates and circuits A universal set of gates? Two protocols The computational model

The circuit model

Circuits in Qiskit

from qiskit import QuantumCircuit

gc = QuantumCircuit(2, 2)
qc.h(0)

qc.cx(0, 1)
gc.measure( [0, 1], [0, 1])
qc.draw()

q:l : X M
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1-Gates

The action of a 1-gate U on a quantum state |¢) can be thought of as a
rotation of the Bloch vector for ) to the Bloch vector for Uld), eg.

Exemple: X
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1-Gates

01
The X = L O] gate
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1-Gates

The Hadamard gate creates superpositions

ST

superposition

H |0) (|0>+|1>)

l+) =

S\

HI1) = |-) = (|0> 1))

%\

The computational model
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1-Gates
The phase shift gate
1 (1 0
%= s lo o)

Ry 10) = 10)
Ry ll) = €'®[1)

The T (or 3) gate

1
T =Ry = [O e"g}

which, up to a global phase factor /%, is equivalent to

e %
0 €%

The computational model
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1-Gates
Pauli gates
| =)0+ =]
X = [10l+10)(1 = |
z =100 - = [}

Y = i(—[1)(0| +[0)(1]) =

Two protocols The computational model

)
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1-Gates

Rotation gates

Correspond to rotations about the three axes of the Bloch sphere, and
are computed as Pauli gates squared.

where e = x,y,zand E= X, Y, Z.

because, for any real number r and matrix R st R?> = /, which is the case
for X, Y, and Z,

irR

e = cos(r)l +isin(r)R
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1-Gates

Rotation gates as matrices in the computational basis
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1-Gates

Compute R.(0)[) for \p) = cos (£)[0) + e sin (Z)[1)

e iz cos (%) 1 e i cos (%)
0 €| [e7sin(g)]  [eFeVsin(g

=% [e Oely s( )( )}
* (eos ()00 + e sin (3)1m)

~—

SN

As global phase is insignificant, the angle mapping y — vy +0 is a
rotation of © around the z-axis of the Bloch sphere.
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1-Gates

Theorem
Let U be a 1-gate, and v, w any two non-parallel axes of the Bloch
sphere. Then there exist real numbers o, 3y, st

U = e*R(B)Ru(Y)R(5)

which means that any 1-gate can be expressed as a sequence of two
rotations about an axis and one rotation about another non parallel axis,
multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.
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2-gates: CNOT

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT

00| @ I + |1)(1] ® X
10) (0l @ (10) (0 + [1)(1]) + [1)(1] @ (11){0 + [0)(1[)
100)(00] 4 [01) (01| + |11)(10] + [10) (11|

1000
o100
“looo0 1
0010

CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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2-gates: CNOT

Control |A)

|4)

Target |B)

|4) @ |B)

|0y ——4
oy

0.507 0.493

... just as the Hadamard operator creates superposition

The computational model
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2-gates: CNOT

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT (\2(0>+|1>)®|o>> = CNOT <\2(IOO>+I10>)>
1
= EHOOHHD)

Since it is its own inverse, it can take an entangled state to an
unentangled one.

Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U® V)|v) isentangled iff |v)is
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2-gates: CNOT

The notions of control/target bit in CNOT are arbitrary: they depend on
what basis is considered. The standard behaviour is obtained in the
computational basis. However, roles are interchanged in the Hadamard
basis in which the effect of CNOT is

l++) = +4) =) = =) [—H) = —4) [——) = +-)

Exercise

is — - 1
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CNOT

H H][! H H
0
LHS = —H} {o x} [H —H]
HX][H H
|\H —HX| |H —H
[+ HXH |—HXH] _ 1[i+Z I-Z
|/ —HXH I+HXH|] — 2|I-Z I+Z
00
00
01
10
0)(0 + X ® [1)(1] = RHS

IT TT

O O = O

1
0
0
0
®

noting that

non = tonmen = L[H B[ 1)< L[ A
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Exercise

Discuss

D
D
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Controlled Q-gates

From I to @

Colo)l) = 10)|@)
Coll)le) = 11)Qlp)

Co = 10)(0lx 1+ 1)(1l® Q

corresponding to the following matrix in the standard basis:

1 0
CQ:{O o}
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Controlled phase shift gate

e = |00)(00| +[01) (01| + €"°[10)(10] + ®[11)(11]

10 0 O
go _ |01 0 0
00 &° 0
00 0 &°

Transforming a global into a local phase

1 1
V2 V2

Actually, a unitary transformation is completely determined by its action
on a basis, but not by specifying what states the states corresponding to
basis states are sent to.

Example: e'® takes the four quantum states to themselves (because e.g.
|10) and e’®|10) represent the same state), but a global phase can be
transformed into a local one, as above

(lo0) +[11) — (100) + e"[11)
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CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled CNOT. If the first two bits are
in the state [1) applies X the third bit, else it does nothing:

lg1g2q3) — 9162, 03 @ (g1 A\ g2))

In matrix form,

10000000
01000000
00100000
00010000
00001000
00000100
00000001

0 00000 1 0
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Universal set of gates?

Is there a universal set of quantum gates?

In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.
However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Definitions
e The error in approximating U by V is

Er(U, V) = maxy, [|[(U—=V)[d) |

e An operator U can be approximated to arbitrary accuracy if for any
positive € there exists another unitary transformation V' st
Er(U,V) <e.

e A set of gates is universal if for any integer n > 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.
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Universal set of gates?

Some examples

e The set {H, T} is universal for 1-gates.
e The set {H, T, CNOT} is a universal set of gates.

How efficient is an approximation?

To approximate an unitary transformation encoding some specific
computation, one would expect to use a number of gates from the
universal set which is polynomial in the number of qubits and the inverse
of the quality factor €.

Main result: theorem of Solovay-Kitaev
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Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.
Surprisingly,

e shows that two classical bits suffice to communicate a qubit state,
which has an infinite number of configurations

e provides a mechanism for the transmission of an unknown quantum
state, in spite of the no-cloning theorem

Note that the original state cannot be preserved (precisely because of the
no-cloning result), which motivates the name of the protocol ...
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Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.

qubit 1:]¢) i
|
|

|
6] (2) o £
i ;
qubit 2:]0) - H |- i 3
: location A
qubit 3:|0) : ;
location B
Uzy —|9)

(3)
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Teleportation

Alice
... has a qubit whose state |p) = «|0) + 3|1) she does not know, but
wants to send to Bob through classical channels.

The starting point is the 3-qubit state after stage (1) whose first 2 qubits
are controlled by Alice and the last by Bob:

entangled entangled
—— —

[b) @1r) = —=(0) @ (|00) + [11)) +B1) @ (|00) + [11)) )

N~

(000) + «|011) 4 B[100) + B|111))
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Teleportation

Alice
... then she applies CNOT ® | and H® | ® | to obtain

(Ho 1o (CNOT  1)(|d) @ |r))

1
= (H& /@ 1) (od000) + o011) + BI110) + BI101))

(«(|000) +011) 4 [100) + [111)) + B(|010) +[001) — [110) — [101)))

NI =N =

(100) ® («]0) + BI1)) +|01) @ («|1) + BI0))+
+ [10) ® (ed0) — BI1)) 4 [11) ® (1) — B0)))



Two protocols

Teleportation

Alice

Alice measures the first two qubits and obtains one of the four standard
basis states, |00),|01), |10),|11), with equal probability.

Depending on the result of her measurement, the state of Bob's qubit is
projected to

«[0) + B[1), «l1) + Bl0), «|0) — B[1), «[1) —B|0)

Then, Alice sends the result of her measurement as two classical bits to
Bob.

After these transformations, crucial information about the original state
|v) is contained in Bob's qubit, Alice’'s being destroyed ...



Two protocols

Teleportation

Bob
When Bob receives the two bits from Alice, he knows how the state of his
half of the entangled pair compares to the original state of Alice's qubit.

Bob can reconstruct the original state of Alice's qubit, |v), by applying
the appropriate decoding transformation to his qubit, originally part of

the entangled pair.

Bits received Bob's state  Transformation to decode

00 «[0) + BL) I
01 «[1) 4+ Blo) X
10 «l0) — By Z
11 all) —BL) Y

After decoding, Bob's qubit will be in the state Alice's qubit started.
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Dense coding

Aim: encode and transmit two classical bits with one qubit and a shared
EPR pair.

This result is surprising, since only one bit can be extracted from a qubit

The idea is that, since entangled states can be distributed ahead of time,
only one qubit needs to be physically transmitted to communicate two
bits of information.

Let Alice (Bob) be sent and operate the first (second) qubit of pair

Ir) = —=1(00) +11))

Sl

EPR pairs
. are entangled states

named after Einstein, Podolsky, and Rosen, from the hidden-variable
controversy



Two protocols

Dense coding

Alice
wishes to transmit the state of two classical bits encoding one of the
numbers O through 3. Depending on this number, Alice performs one of

the Pauli transformations on her qubit of the entangled pair |r), and
sends her qubit to Bob.

Transformation New state

0 (I xNn Z(00) +11)
1 (X xNir) %(|1o> +101)
2 (Zx ) 75 (100) —111)
3 (Y x D) - (—110) +01)




Bob

Two protocols

Dense coding

to decode the information, applies a CNOT to the two qubits of the
entangled pair and then H to the first qubit:

CNOT —

Hl —

1
200 o | [ 2 Loy e
\?(|00>—\10>) - f(|o> 1)) ® [0)
Y +ow)| | Lo +10) e
L2 V2
[00)
01)
10)
[11)

Bob then measures the two qubits in the standard basis to obtain the
2-bit binary encoding of the number Alice wished to send



Quantum gates and circuits A universal set of gates? Two protocols The computational model

The computational model

A probabilistic machine

States: Given a set of possible configurations, states are vectors of
probabilities in R” which express indeterminacy about the exact physical
configuration, e.g. [po e p,,] T st >ip=1

Operator: double stochastic matrix (must come (go) from (to)
somewhere), where M; ; specifies the probability of evolution from
configuration j to i

Evolution: computed through matrix multiplication with a vector |u) of
current probabilities

e M|u) (next state)
e |u)TMT (previous state)

Measurement: the system is always in some configuration — if found in
i, the new state will be a vector |t) st t;j =&, ;
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The computational model
Composition:

P11
p1 } { a1 } _ pi(l—q1)
—p1 1—q (1—p1)aq
(1—p1)(1—q1)

p®q = [1

e correlated states: cannot be expressed as p ® g, e.g.

0.5
0
0

0.5

e Operators are also composed by ® (Kronecker product):
MiaN- - My aN

MeN = : :
MpiN - MpaN
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The computational model

A quantum machine

States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in C”

Operator: unitary matrix (MM = ). The norm squared of a unitary
matrix forms a double stochastic one.

Evolution: computed through matrix multiplication with a vector |u) of
current amplitudes (wave function)

e M|u) (next state)

e |[u)TMT (previous state)

Measurement: configuration i is observed with probability || «; ||? if found
in 7, the new state will be a vector |t) st t; =5, ;

Composition: also by a tensor on the complex vector space; may exist
entangled states
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The computational model

The structure of a quantum algorithm

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)
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