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The circuit model

Classical reversible circuits (which can simulate any non-reversible one
with modest overhead) generalise to quantum circuits where

• logical qubits are carried along wires,

• quantum gates, corresponding to unitary transformations, act on
them,

• and measurements of a quantum state |φ〉 =
∑

i αi |i〉result in a
state |i〉, with probability given by the norm squared of its
amplitude, ‖αi ‖2, together with a classical label i indicating which
outcome was obtained.



Quantum gates and circuits A universal set of gates? Two protocols The computational model

The circuit model

Quantum gates
A gate is a transformation that acts on only a small number of qubits
Differently from the classical case, they do not necessarily correspond to
physical objects

Notation
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The circuit model

Circuits in Qiskit
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1-Gates

The action of a 1-gate U on a quantum state |φ〉 can be thought of as a
rotation of the Bloch vector for |φ〉 to the Bloch vector for U |φ〉, eg.

Exemple: X
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1-Gates

The X =

[
0 1
1 0

]
gate

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉
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1-Gates

The Hadamard gate creates superpositions

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 =

superposition︷ ︸︸ ︷
1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)
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1-Gates

The phase shift gate

Rφ =
1√
2

[
1 0
0 e iφ

]

Rφ |0〉 = |0〉
Rφ |1〉 = e iφ|1〉

The T (or π
8

) gate

T = Rπ
4

=

[
1 0
0 e i

π
4

]
which, up to a global phase factor e i

π
8 , is equivalent to[

e−i π8 0
0 e i

π
8

]
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1-Gates

Pauli gates

I = |0〉〈0|+ |1〉〈1| =
[

1 0
0 1

]
X = |1〉〈0|+ |0〉〈1| =

[
0 1
1 0

]
Z = |0〉〈0|− |1〉〈1| =

[
1 0
0 −1

]
= Rπ

Y = i(−|1〉〈0|+ |0〉〈1|) =
[

0 −i
i 0

]
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1-Gates

Rotation gates
Correspond to rotations about the three axes of the Bloch sphere, and
are computed as Pauli gates squared.

Re(θ) =̂ e
−iθE

2 = cos

(
θ

2

)
I − i sin

θ

2
E

where e =̂ x , y , z and E =̂ X ,Y ,Z .

because, for any real number r and matrix R st R2 = I , which is the case
for X , Y , and Z ,

e irR = cos(r)I + i sin(r)R
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1-Gates

Rotation gates as matrices in the computational basis

Rx(θ) =

[
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ]

Ry (θ) =

[
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ]

Rz(θ) =

[
e−i θ2 0

0 e i
θ
2

]
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1-Gates

Compute Rz(θ)|ψ〉 for |ψ〉 = cos
(
σ
2

)
|0〉+ e iγ sin

(
σ
2

)
|1〉

[
e−i θ2 0

0 e i
θ
2

] [
cos
(
σ
2

)
e iγ sin

(
σ
2

)] =

[
e−i θ2 cos

(
σ
2

)
e i

θ
2 e iγ sin

(
σ
2

)]

= e−i θ2

[
cos
(
σ
2

)
e iθe iγ sin

(
σ
2

)]
= e−i θ2

(
cos
(σ

2

)
|0〉 + e i(γ+θ) sin

(σ
2

)
|1〉
)

As global phase is insignificant, the angle mapping γ 7→ γ+ θ is a
rotation of θ around the z-axis of the Bloch sphere.
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1-Gates

Theorem
Let U be a 1-gate, and v ,w any two non-parallel axes of the Bloch
sphere. Then there exist real numbers α,βγ, δ st

U = e iαRv (β)Rw (γ)Rv (δ)

which means that any 1-gate can be expressed as a sequence of two
rotations about an axis and one rotation about another non parallel axis,
multiplied by a suitable phase factor.

proof hint: Recall U is unitary and unfold the definition of rotation gate.
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2-gates: CNOT

Acts on the standard basis for a 2-qubit system, flipping the second bit if
the first bit is 1 and leaving it unchanged otherwise.

CNOT = |0〉〈0|⊗ I + |1〉〈1|⊗ X

= |0〉〈0|⊗ (|0〉〈0|+ |1〉〈1|) + |1〉〈1|⊗ (|1〉〈0|+ |0〉〈1|)
= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|

=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CNOT is unitary and is its own inverse, and cannot be decomposed into
a tensor product of two 1-qubit transformations
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2-gates: CNOT

... just as the Hadamard operator creates superposition
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2-gates: CNOT

The importance of CNOT is its ability to change the entanglement
between two qubits, e.g.

CNOT

(
1√
2
(|0〉+ |1〉)⊗ |0〉

)
= CNOT

(
1√
2
(|00〉+ |10〉)

)
=

1√
2
(|00〉+ |11〉)

Since it is its own inverse, it can take an entangled state to an
unentangled one.
Note that entanglement is not a local property in the sense that
transformations that act separately on two or more subsystems cannot
affect the entanglement between those subsystems:

(U ⊗ V ) |v〉 is entangled iff |v〉 is
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2-gates: CNOT

The notions of control/target bit in CNOT are arbitrary: they depend on
what basis is considered. The standard behaviour is obtained in the
computational basis. However, roles are interchanged in the Hadamard
basis in which the effect of CNOT is

|++〉 7→ |++〉 |+−〉 7→ |−−〉 |−+〉 7→ |−+〉 |−−〉 7→ |+−〉

Exercise

80 5 Quantum State Transformations

standard basis elements, the effect of the controlled gate can be somewhat counterintuitive. For
example, consider the Cnot gate in the Hadamard basis {|+⟩, |−⟩}:
Cnot : |++⟩ → |++⟩

|+−⟩ → |−−⟩
|−+⟩ → |−+⟩
|−−⟩ → |+−⟩.

In the Hadamard basis, it is the state of the second qubit that remains unchanged, and the state
of the first qubit that is flipped depending on the state of the second bit. Thus, in this basis the
sense of which bit is the control bit and which the target bit has been reversed. But we have
not changed the transformation at all, only the way we are thinking about it. Furthermore, in
most bases, we do not see a control bit or a target bit at all. For example, as we have seen, the
controlled-not transforms 1√

2
(|0⟩ + |1⟩)|0⟩ to 1√

2
(|00⟩ + |11⟩). In this case the controlled-not

entangles the qubits so that it is not possible to talk about their states separately.
A related fact, which we will use in constructing algorithms and in quantum error correction,

is that the following two circuits are equivalent:

H

H

H

H
=

Caution 3: Reading circuit diagrams The graphical representation of quantum circuits can be
misleading if one is not careful to interpret it properly. In particular, one cannot determine the
effect the transformation has on the input qubits, even if they are all in standard basis states, by
simply looking at the line in the diagram corresponding to that qubit. Let us look at the circuit

H H

acting on the input state |0⟩|0⟩. Since the Hadamard transformation is its own inverse, it might at
first appear that the first qubit’s state would remain unchanged by the transformation. But it does
not. Recall from caution 2 that the controlled-not gate does not leave the first qubit unaffected in
general. In fact, this circuit takes the input state |00⟩ to 1/2(|00⟩ + |10⟩ + |01⟩ − |11⟩), an effect
that cannot be seen immediately from the circuit and so must be explicitly calculated.

5.3 Applications of Simple Gates

For many years, EPR pairs, and entanglement more generally, were viewed as quantum mechan-
ical oddities of merely theoretical interest. Quantum information processing changes that per-
ception by providing practical applications of entanglement. Two communications applications,



Quantum gates and circuits A universal set of gates? Two protocols The computational model

The proof

LHS =
1

2

[
H H
H −H

] CNOT︷ ︸︸ ︷[
I 0
0 X

] [
H H
H −H

]
=

1

2

[
H HX
H −HX

] [
H H
H −H

]
=

1

2

[
I + HXH I − HXH
I − HXH I + HXH

]
=

1

2

[
I + Z I − Z
I − Z I + Z

]

=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


= I ⊗ |0〉〈0| + X ⊗ |1〉〈1| = RHS

noting that

H ⊗ H = (I ⊗ H)(H ⊗ I ) =
1√
2

[
H 0
0 H

] [
I I
I −I

]
=

1√
2

[
H H
H −H

]
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Exercise

Discuss

5.2 Some Simple Quantum Gates 79

In other words, this swap circuit takes

|00⟩ "→ |00⟩
|01⟩ "→ |10⟩
|10⟩ "→ |01⟩
|11⟩ "→ |11⟩,

and |ψ⟩|φ⟩ "→ |φ⟩|ψ⟩ for all single-qubit states |ψ⟩ and |φ⟩.
Three cautions are in order. The first concerns the use of a basis to specify the transformation.

The second concerns the basis dependence of the notion of control. The third suggests care in
interpreting the graphical notation for quantum circuits.

Caution 1: Phases in Specifications of Transformations Section 3.1.3 discussed the important
distinction between the quantum state space (projective space) and the associated complex vector
space. We need to keep this distinction in mind when interpreting the standard ways quantum state
transformations are specified. A unitary transformation on the complex vector space is completely
determined by its action on a basis. The unitary transformation is not completely determined by
specifying what states the states corresponding to basis states are sent to, a subtle distinction. For
example, the controlled phase shift takes the four quantum states represented by |00⟩, |01⟩, |10⟩,
and |11⟩ to themselves; |10⟩ and eiθ |10⟩ represent exactly the same quantum state, and so do |11⟩
and eiθ |11⟩. As we saw above, however, this transformation is not the identity transformation
since it takes 1√

2
(|00⟩ + |11⟩) to 1√

2
(|00⟩ + eiθ |10⟩). To avoid mistakes, remember that notation

such as

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

is used to specify a unitary transformation on the complex vector space in terms of vectors in
that vectors space, not in terms of the states corresponding to these vectors. Specifying that the
vector |0⟩ goes to the vector −|1⟩ is different from specifying that |0⟩ goes to |1⟩ because the two
vectors −|1⟩ and |1⟩ are different vectors even if they correspond to the same state. The quantum
transformation on the state space is easily derived from the unitary transformation on the associated
complex vector space.

Caution 2: Basis Dependence of the Notion of Control The notion of the control bit and the target
bit is a carryover from the classical gate and should not be taken too literally. In the standard basis,
the Cnot operator behaves exactly as the classical gate does on classical bits. However, one should
not conclude that the control bit is never changed. When the input qubits are not one of the
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Controlled Q-gates

From

5.2 Some Simple Quantum Gates 77

5.2.4 The Controlled-NOT and Other Singly Controlled Gates
The controlled-not gate, Cnot , acts on the standard basis for a two-qubit system, with |0⟩ and
|1⟩ viewed as classical bits, as follows: it flips the second bit if the first bit is 1 and leaves it
unchanged otherwise. The Cnot transformation has representation

Cnot = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ X

= |0⟩⟨0| ⊗ (|0⟩⟨0| + |1⟩⟨1|) + |1⟩⟨1| ⊗ (|1⟩⟨0| + |0⟩⟨1|)
= |00⟩⟨00| + |01⟩⟨01| + |11⟩⟨10| + |10⟩⟨11|,

from which it is easy to read off its effect on the standard basis elements:

Cnot : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |11⟩
|11⟩ → |10⟩.

The matrix representation (in the standard basis) for Cnot is
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .

Observe that Cnot is unitary and is its own inverse. Furthermore, the Cnot gate cannot be
decomposed into a tensor product of two single-qubit transformations.

The importance of the Cnot gate for quantum computation stems from its ability to change
the entanglement between two qubits. For example, it takes the unentangled two-qubit state

1√
2
(|0⟩ + |1⟩)|0⟩ to the entangled state 1√

2
(|00⟩ + |11⟩):

Cnot

(
1√
2
(|0⟩ + |1⟩) ⊗ |0⟩

)
= Cnot

(
1√
2
(|00⟩ + |10⟩)

)

= 1√
2
(|00⟩ + |11⟩).

Similarly, since it is its own inverse, it can take an entangled state to an unentangled one.
The controlled-not gate is so common that it has its own graphical notation.

The open circle indicates the control bit, the × indicates negation of the target bit, and the line
between them indicates that the negation is conditional, depending on the value of the control
bit. Some authors use a solid circle to indicate negative control, in which the target bit is toggled
when the control bit is 0 instead of 1.

to

78 5 Quantum State Transformations

A useful class of two-qubit controlled gates, which generalizes the Cnot gate, consists of gates
that perform a single-qubit transformation Q on the second qubit when the first qubit is |1⟩ and
do nothing when it is |0⟩. These controlled gates have graphical representation

Q

We use the following shorthand for these transformations:
∧

Q = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Q.

The transformation Cnot , for example, becomes
∧

X in this notation. In the standard compu-
tational basis, the two-qubit operator

∧
Q is represented by the 4 × 4 matrix

(
I 0
0 Q

)
.

Let us look in more depth at one of these controlled gates, the controlled phase shift
∧

eiθ ,
where eiθ is shorthand for eiθI . In the standard basis, the controlled phase shift changes the phase
of the second bit if and only if the control bit is one:
∧

eiθ = |00⟩⟨00| + |01⟩⟨01| + eiθ |10⟩⟨10| + eiθ |11⟩⟨11|.

Its effect on the standard basis elements is as follows:
∧

eiθ : |00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → eiθ |10⟩
|11⟩ → eiθ |11⟩

and it has matrix representation
⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 eiθ 0
0 0 0 eiθ

⎞

⎟⎟⎠ .

The controlled phase shift makes use of a single-qubit transformation that was a physically
meaningless global phase shift when applied to a single-qubit system, but when used as part of
a conditional transformation, this phase shift becomes nontrivial, changing the relative phase
between elements of a superposition. For example, it takes

1√
2
(|00⟩ + |11⟩) → 1√

2
(|00⟩ + eiθ |11⟩).

Graphical icons can be combined into quantum circuits. The following circuit, for instance,
swaps the value of the two bits.

CQ |0〉|ϕ〉 = |0〉|ϕ〉
CQ |1〉|ϕ〉 = |1〉Q |ϕ〉

CQ = |0〉〈0|⊗ I + |1〉〈1|⊗ Q

corresponding to the following matrix in the standard basis:

CQ =

[
1 0
0 Q

]
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Controlled phase shift gate

e iθ = |00〉〈00|+ |01〉〈01|+ e iθ|10〉〈10|+ e iθ|11〉〈11|

e iθ =


1 0 0 0
0 1 0 0
0 0 e iθ 0
0 0 0 e iθ


Transforming a global into a local phase

1√
2
(|00〉+ |11〉 −→ 1√

2
(|00〉+ e iθ|11〉

Actually, a unitary transformation is completely determined by its action
on a basis, but not by specifying what states the states corresponding to
basis states are sent to.
Example: e iθ takes the four quantum states to themselves (because e.g.
|10〉 and e iθ|10〉 represent the same state), but a global phase can be
transformed into a local one, as above
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CCNOT or Toffoli gate

A 3-bit gate corresponding to controlled CNOT . If the first two bits are
in the state |1〉 applies X the third bit, else it does nothing:

|q1q2q3〉 7→ |q1q2, q3 ⊕ (q1 ∧ q2)〉

In matrix form, 

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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Universal set of gates?

Is there a universal set of quantum gates?
In general no: there are uncountably many quantum transformations, and
a finite set of generators can only generate countably many elements.
However, it is possible for finite sets of gates to generate arbitrarily close
approximations to all unitary transformations.

Definitions

• The error in approximating U by V is

Er(U,V ) = max|φ〉 ‖(U − V )|φ〉‖

• An operator U can be approximated to arbitrary accuracy if for any
positive ε there exists another unitary transformation V st
Er(U,V ) ≤ ε.

• A set of gates is universal if for any integer n ≥ 1, any n-qubit
unitary operator can be approximated to arbitrary accuracy by a
quantum circuit using only gates from that set.
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Universal set of gates?

Some examples

• The set {H,T } is universal for 1-gates.

• The set {H,T ,CNOT } is a universal set of gates.

How efficient is an approximation?
To approximate an unitary transformation encoding some specific
computation, one would expect to use a number of gates from the
universal set which is polynomial in the number of qubits and the inverse
of the quality factor ε.

Main result: theorem of Solovay-Kitaev
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Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.
Surprisingly,

• shows that two classical bits suffice to communicate a qubit state,
which has an infinite number of configurations

• provides a mechanism for the transmission of an unknown quantum
state, in spite of the no-cloning theorem

Note that the original state cannot be preserved (precisely because of the
no-cloning result), which motivates the name of the protocol ...
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Teleportation

Aim: to transmit, using two classical bits, the state of a single qubit.
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Teleportation

Alice
... has a qubit whose state |φ〉 = α|0〉+ β|1〉 she does not know, but
wants to send to Bob through classical channels.

The starting point is the 3-qubit state after stage (1) whose first 2 qubits
are controlled by Alice and the last by Bob:

|φ〉 ⊗ |r〉 =
1√
2
(α|0〉 ⊗

entangled︷ ︸︸ ︷
(|00〉+ |11〉)+β|1〉 ⊗

entangled︷ ︸︸ ︷
(|00〉+ |11〉) )

=
1√
2
(α|000〉+ α|011〉+ β|100〉+ β|111〉)
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Teleportation

Alice
... then she applies CNOT ⊗ I and H ⊗ I ⊗ I to obtain

(H ⊗ I ⊗ I )(CNOT ⊗ I )(|φ〉 ⊗ |r〉)

= (H ⊗ I ⊗ I )
1√
2
(α|000〉+ α|011〉+ β|110〉+ β|101〉)

=
1

2
(α(|000〉+ |011〉+ |100〉+ |111〉) + β(|010〉+ |001〉− |110〉− |101〉))

=
1

2
(|00〉 ⊗ (α|0〉+ β|1〉) + |01〉 ⊗ (α|1〉+ β|0〉)+

+ |10〉 ⊗ (α|0〉− β|1〉) + |11〉 ⊗ (α|1〉− β|0〉))



Quantum gates and circuits A universal set of gates? Two protocols The computational model

Teleportation

Alice
Alice measures the first two qubits and obtains one of the four standard
basis states, |00〉, |01〉, |10〉, |11〉, with equal probability.
Depending on the result of her measurement, the state of Bob’s qubit is
projected to

α|0〉+ β|1〉, α|1〉+ β|0〉, α|0〉− β|1〉, α|1〉− β|0〉

Then, Alice sends the result of her measurement as two classical bits to
Bob.

After these transformations, crucial information about the original state
|v〉 is contained in Bob’s qubit, Alice’s being destroyed ...
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Teleportation

Bob
When Bob receives the two bits from Alice, he knows how the state of his
half of the entangled pair compares to the original state of Alice’s qubit.

Bob can reconstruct the original state of Alice’s qubit, |v〉, by applying
the appropriate decoding transformation to his qubit, originally part of
the entangled pair.

Bits received Bob’s state Transformation to decode
00 α|0〉+ β|1〉 I
01 α|1〉+ β|0〉 X
10 α|0〉− β|1〉 Z
11 α|1〉− β|1〉 Y

After decoding, Bob’s qubit will be in the state Alice’s qubit started.
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Dense coding

Aim: encode and transmit two classical bits with one qubit and a shared
EPR pair.

This result is surprising, since only one bit can be extracted from a qubit

The idea is that, since entangled states can be distributed ahead of time,
only one qubit needs to be physically transmitted to communicate two
bits of information.
Let Alice (Bob) be sent and operate the first (second) qubit of pair

|r〉 =
1√
2
(|00〉+ |11〉)

EPR pairs
... are entangled states
named after Einstein, Podolsky, and Rosen, from the hidden-variable
controversy
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Dense coding

Alice
wishes to transmit the state of two classical bits encoding one of the
numbers 0 through 3. Depending on this number, Alice performs one of
the Pauli transformations on her qubit of the entangled pair |r〉, and
sends her qubit to Bob.

Transformation New state
0 (I × I )|r〉 1√

2
(|00〉+ |11〉

1 (X × I )|r〉 1√
2
(|10〉+ |01〉

2 (Z × I )|r〉 1√
2
(|00〉− |11〉

3 (Y × I )|r〉 1√
2
(−|10〉+ |01〉
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Dense coding

Bob
to decode the information, applies a CNOT to the two qubits of the
entangled pair and then H to the first qubit:

CNOT −→


1√
2
(|00〉+ |10〉)

1√
2
(|11〉+ |01〉)

1√
2
(|00〉− |10〉)

1√
2
(−|11〉+ |01〉)

 =


1√
2
(|0〉+ |1〉)⊗ |0〉

1√
2
(|1〉+ |0〉)⊗ |1〉

1√
2
(|0〉− |1〉)⊗ |0〉

1√
2
(−|1〉+ |0〉)⊗ |1〉



H ⊗ I −→

|00〉
|01〉
|10〉
|11〉


Bob then measures the two qubits in the standard basis to obtain the
2-bit binary encoding of the number Alice wished to send
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The computational model

A probabilistic machine
States: Given a set of possible configurations, states are vectors of
probabilities in Rn which express indeterminacy about the exact physical

configuration, e.g.
[
p0 · · · pn

]T
st

∑
i p1 = 1

Operator: double stochastic matrix (must come (go) from (to)
somewhere), where Mi,j specifies the probability of evolution from
configuration j to i
Evolution: computed through matrix multiplication with a vector |u〉 of
current probabilities

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: the system is always in some configuration — if found in
i , the new state will be a vector |t〉 st tj = δj,i
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The computational model
Composition:

p ⊗ q =

[
p1

1 − p1

]
⊗
[

q1
1 − q1

]
=


p1q1

p1(1 − q1)
(1 − p1)q1

(1 − p1)(1 − q1)


• correlated states: cannot be expressed as p ⊗ q, e.g.

0.5
0
0

0.5


• Operators are also composed by ⊗ (Kronecker product):

M ⊗ N =

M1,1N · · · M1,nN
...

...
Mm,1N · · · Mm,nN


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The computational model

A quantum machine
States: given a set of possible configurations, states are unit vectors of
(complex) amplitudes in Cn

Operator: unitary matrix (M†M = I ). The norm squared of a unitary
matrix forms a double stochastic one.
Evolution: computed through matrix multiplication with a vector |u〉 of
current amplitudes (wave function)

• M |u〉 (next state)

• |u〉TMT (previous state)

Measurement: configuration i is observed with probability ‖αi ‖2 if found
in i , the new state will be a vector |t〉 st tj = δj,i
Composition: also by a tensor on the complex vector space; may exist
entangled states
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The computational model

The structure of a quantum algorithm

1. State preparation (fix initial setting)

2. Transformation
(combination of unitary transformations)

3. Measurement
(projection onto a basis vector associated with a measurement tool)
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