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The principles State space Evolution Composition Measurement

The principles

If quantum computation explores the laws of quantum mechanics as
computational resources, principles of the former are directly derived
from the postulates of the latter.

• The state space postulate

• The state evolution postulate

• The state composition postulate

• The state measurement postulate
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The state space postulate

Postulate 1
The state space of a quantum system is described by a unit vector in a
Hilbert space

• In practice, with finite resources, one cannot distinguish between a
continuous state space from a discrete one with arbitrarily small
minimum spacing between adjacente locations.

• One may, then, restrict to finite-dimensional (complex) Hilbert
spaces.
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The state space postulate

A qubit is encoded in a 2-dimensional such space as a linear combination
(superposition) of basis vectors with complex coefficients:

|φ〉 = α|0〉+ β|1〉 =

[
α
β

]
obeying the normalization constraint

‖α‖2 + ‖β‖2 = 1

which enforces quantum states to be represented by unit vectors (to
ensure compatibility with the measurement postulate)

Recall that a complex amplitude α can always be presented as a phase
factor e iθ, where θ is know the phase
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The state space of a qubit

Representation redundancy:

qubit state space 6= complex vector space used for representation

Global phase
Unit vectors equivalent up to multiplication by a complex number of
modulus one, i.e. a phase e iθ, represent the same state.

Let
|v〉 = α|u〉+ β|u ′〉

‖e iθα‖2= (e iθα)(e iθα) = (e−iθα)(e iθα) = αα =‖α‖2

and similarly for β.

As the probabilities ‖α‖2 and ‖β‖2 are the only measurable quantities,
the global phase has no physical meaning.
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The state space of a qubit

Relative phase
It is a measure of the angle between the two complex numbers.
Thus, it cannot be discarded!

Those are different states

1√
2
(|u〉+ |u ′〉) 1√

2
(|u〉− |u ′〉) 1√

2
(e iθ|u〉+ |u ′〉)

...
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The Bloch sphere

Deterministic, probabilistic and quantum bits

(from [Kaeys et al, 2007])
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The Bloch sphere
The state of a quantum bit is described by a complex unit vector in a
2-dim Hilbert space, which, up to a physically irrelevant global phase
factor, can be written as

|ψ〉 = cos
θ

2︸ ︷︷ ︸
α

|0〉+ e iϕ sin
θ

2︸ ︷︷ ︸
β

|1〉

where 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π, and depicted as a point on the surface of
a 3-dim Bloch sphere, defined by θ and ϕ.
The Bloch vector |ψ〉 has

• Spherical coordinates:
x = ρ sin θ cosϕ y = ρ sin θ sinϕ = z = ρ cos θ

• Measurement probabilities:

‖α‖2 =
(

cos
θ

2

)
=

1

2
+

1

2
cos θ

‖β‖2 =
(

sin
θ

2

)
=

1

2
−

1

2
cos θ
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The Bloch sphere

• The poles represent the classical bits. In general, orthogonal states
correspond to antipodal points and every diameter to a basis for the
single-qubit state space.

• Once measured a qubit collapses to one of the two poles. Which
pole depends exactly on the arrow direction: The angle θ measures
that probability: If the arrow points at the equator, there is 50-50
chance to collapse to any of the two poles.

• Rotating a vector wrt the z-axis results into a phase change (ϕ),
and does not affect which state the arrow will collapse to, when
measured.
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The Bloch sphere

Representing |ψ〉 = α|0〉+ β|1〉
Express |ψ〉 in polar form

|ψ〉 = ρ1e iϕ1 |0〉+ ρ2e iϕ2 |1〉

and eliminate one of the four real parameters multiplying by e−iϕ1

|ψ〉 = ρ1|0〉+ ρ2e i(ϕ2−ϕ1)|1〉 = ρ1|0〉+ ρ2e iϕ|1〉

making ϕ = ϕ2 −ϕ1.

Switch back the coefficient of |1〉 to Cartesian coordinates and compute
the normalization constraint

‖ρ1 ‖2 + ‖a + ib‖2 = ‖ρ1 ‖2 +(a − ib)(a + ib) = ‖ρ1 ‖2 +a2 + b2 = 1

which is the equation of a unit sphere in Real 3-dim space with Cartesian
coordinates: (a, b, ρ1).
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The Bloch sphere

Back to polar,

x =ρ sin θ cosϕ

y =ρ sin θ sinϕ

z =ρ cos θ

So, recalling that ρ = 1,

|ψ〉 = z |0〉+ (a + ib)|1〉
= cos θ|0〉+ sin θ(cosϕ− i sinϕ)|1〉
= cos θ|0〉+ e iϕ sin θ|1〉

which, with two parameters, defines a point in the sphere’s surface.
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The Bloch sphere

Actually, one may just focus on the upper hemisphere (0 ≤ θ ′ ≤ π
2 ) as

opposite points in the lower one differ only by a phase factor of −1:

Let |ψ ′〉 be the opposite point on the sphere with polar coordinates
(1, π− θ ′, ϕ+ π)

|ψ ′〉 = cos (π− θ ′)|0〉+ e i(ϕ+π) sin (π− θ ′)|1〉
= − cos θ ′|0〉+ e iϕe iπ sin θ ′|1〉
= − cos θ ′|0〉+ e iϕ sin θ ′|1〉
= −|ψ〉

|ψ〉 = cos
θ

2
|0〉+ e iϕ sin

θ

2
|1〉

where 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π
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C compactification

The Bloch sphere is a bijective correspondence between qubits and point
in the space; formally, a latitude (φ) and longitude (θ) based
representation of the state space of a qubit in the complex projective
space of dimension 1.

Alternative: C compactification
Represents a qubit by a complex number in C ∪ {⊥} through a
correspondence ξ:

ξ = α|0〉+ β|1〉 7→ b/a and |1〉 7→ ⊥

ξ−1 = γ 7→ 1√
1+ ‖γ‖2

|0〉+ γ√
1+ ‖γ‖2

|1〉 and ⊥ 7→ |1〉
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The state evolution postulate

Postulate 2
The evolution over time of the state of a closed quantum system is
described by a unitary operator.

The evolution is linear

U

∑
j

αj |vj〉

 =
∑
j

αj U(|vj〉)

and preserves the normalization constraint

If
∑
j

αj U(|vj〉) =
∑
j

α ′j |vj〉 then
∑
j

‖α ′j ‖2 = 1
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Unitarity

Unitary
This entails a condition on valid quantum operators: they must preserve
the inner product, i.e.

(U |v〉,U |w〉) = 〈v |U†U |w〉 = 〈v |w〉

which is the case iff U is unitary

U†U = UU† = I

• Preserving the inner product means that a unitary operator maps
orthonormal bases to orthonormal bases.

• Conversely, any operator with this property is unitary.

• If given in matrix form, being unitary means that the set of columns
of its matrix representation are orthonormal (because the jth column
is the image of U |j〉). Equivalently, rows are orthonormal (why?)
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Unitarity

Unitarity is the only constraint on quantum operators: Any unitary
matrix specifies a valid quantum operator.

This means that there are many non-trivial operators on a single qubit
(in contrast with the classical case where the only non-trivial operation
on a bit is complement.

Finally, because the inverse of a unitary matrix is also a unitary matrix, a
quantum operator can always be inverted by another quantum operator

Unitary transformations are reversible
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The state evolution postulate

Examples: The Pauli operators

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

• Operators X , Y and Z correspond to rotations in the Bloch sphere
along the x , y and z axis, respectively.

• Any 1-qubit unitary operator can be expressed as a linear
combination of Pauli operators.
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The no-cloning theorem

Linearity implies that quantum states cannot be cloned

Let U(|a〉|0〉) = |a〉|a〉 be a 2-qubit operator and |c〉 = 1√
2
(|a〉+ |b〉) for

|a〉, |b〉 orthogonal. Then,

U(|c〉|0〉) =
1√
2
(U(|a〉|0〉) + U(|b〉|0〉))

=
1√
2
(|a〉|a〉+ |b〉|b〉)

6= 1√
2
(|a〉|a〉+ |a〉|b〉+ |b〉|a〉+ |b〉|b〉)

= |c〉|c〉
= U(|c〉|0〉)

This, however, does not preclude the construction of a known quantum
state from a known quantum state.
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Building larger states from smaller

Operator U in the no-cloning theorem acts on a 2-dimensional state, i.e.
over the composition of two qubits.

What does composition mean?

Postulate 3
The state space of a combined quantum system is the tensor product
V ⊗W of the state spaces V and W of its components.
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Composing classical states

State spaces in a classical system combine through direct sum: ⊕

n m-dimensional vectors  a vector in mn-dimensional space

Example

ab
c

⊕
de
f

 =


a
b
c
d
e
f
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Composing classical states

Direct sum V ⊕W

• BV⊕W = BV ∪ BW and dim(V ⊕W) = dim(V) + dim(W)

• Vector addition and scalar multiplication are performed in each
component and the results added

• 〈(|u2〉 ⊕ |z2〉)|(|u1〉 ⊕ |z1〉)〉 = 〈u2|u1〉+ 〈z2|z1〉

• V and W embed canonically in V ⊕W and the images are
orthogonal under the standard inner product
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Composing quantum states
State spaces in a quantum system combine through tensor: ⊗

n m-dimensional vectors  a vector in mn-dimensional space

i.e. the state space of a quantum system grows exponentially with the
number of particles: cf, Feyman’s original motivation

Example

ab
c

⊗
de
f

 =



a

de
f


b

de
f


c

de
f




=



ad
ae
af
bd
be
bf
cd
ce
cf
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Composing quantum states

Tensor V ⊗W

• BV⊗W is a set of elements of the form |vi 〉 ⊗ |wj〉, for each
|vi 〉 ∈ BV , |wi 〉 ∈ BW and dim(V ⊗W) = dim(V)× dim(W)

• (|u1〉+ |u2〉)⊗ |z〉 = |u1〉 ⊗ |z〉+ |u2〉 ⊗ |z〉

• |z〉 ⊗ (|u1〉+ |u2〉) = |z〉 ⊗ |u1〉+ |z〉 ⊗ |u2〉

• (α|u〉)⊗ |z〉 = |u〉 ⊗ (α|z〉) = α(|u〉 ⊗ |z〉)

• 〈(|u2〉 ⊗ |z2〉)|(|u1〉 ⊗ |z1〉)〉 = 〈u2|u1〉〈z2|z1〉
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Composing quantum states

Clearly, every element of V ⊗W can be written as

α1(|v1〉 ⊗ |w1〉) + α2(|v2〉 ⊗ |w1〉) + · · ·+ αnm(|vn〉 ⊗ |wm〉)

Example
The basis of V ⊗W , for V ,W qubits with the computational basis is

{|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉}

Thus, the tensor of α1|0〉+ α2|1〉 and β1|0〉+ β2|1〉 is

α1β1|0〉 ⊗ |0〉 + α1β2|0〉 ⊗ |1〉 + α2β1|1〉 ⊗ |0〉 + α2β2|1〉 ⊗ |1〉

i.e., in a simplified notation,

α1β1|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉
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Bases

The computational basis for a vector space

V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

corresponding to the composition of n qubits (each living in V ) is the set

{|0〉 · · · |0〉|0〉︸ ︷︷ ︸
n

, |0〉 · · · |0〉|1〉︸ ︷︷ ︸
n

, |0〉 · · · |1〉|0〉︸ ︷︷ ︸
n

, · · · |1〉 · · · |1〉|1〉︸ ︷︷ ︸
n

}

abv
=

{|0 · · · 00〉︸ ︷︷ ︸
n

, |0 · · · 01〉︸ ︷︷ ︸
n

, |0 · · · 10〉︸ ︷︷ ︸
n

, · · · |1 · · · 11〉︸ ︷︷ ︸
n

}

which may be written in a compressed (decimal) way as

{|0〉, |1〉, |2〉, |3〉, · · · |2n − 1〉}
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Bases

The computational basis for a two qubit system would be

{|0〉, |1〉, |2〉, |3〉}

with

|0〉 = |00〉 =


1
0
0
0

 |1〉 = |01〉 =


0
1
0
0

 |2〉 = |10〉 =


0
0
1
0

 |3〉 = |11〉 =


0
0
0
1
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Bases

There are of course other bases
... besides the standard one, e.g.

The Bell basis

|Φ+〉 = 1√
2
(|00〉+ |11〉)

|Φ−〉 = 1√
2
(|00〉− |11〉)

|Ψ+〉 = 1√
2
(|01〉+ |10〉)

|Ψ−〉 = 1√
2
(|01〉− |10〉)

Compare with the Hadamard basis for the single qubit systems
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Representing multi-qubit states

Any unit vector in a 2n Hilbert space represents a possible n-qubit state,
but for

... a certain level of redundancy

• As before, vectors that differ only in a global phase represent the
same quantum state

• but also the same phase factor in different qubits of a tensor
product represent the same state:

|u〉 ⊗ (e iφ|z〉) = e iφ(|u〉 ⊗ |z〉) = (e iφ|u〉)⊗ |z〉

Actually, phase factors in qubits of a single term of a superposition
can always be factored out into a coefficient for that term, i.e.
phase factors distribute over tensors
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Representing multi-qubit states

Representation

• Relative phases still matter (of course!)

1√
2
(|00〉+ |11〉) differs from

1√
2
(e iφ|00〉+ |11〉)

even if

1√
2
(|00〉+ |11〉) =

1√
2
(e iφ|00〉+ e iφ|11〉) =

e iφ√
2
(|00〉+ |11〉

• The complex projective space of dimension 1 (depicted in the Block
sphere) generalises to higher dimensions, although in practice
linearity makes Hilbert spaces easier to use.
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Entanglement

Most states in V ⊗W cannot be written as |u〉 ⊗ |z〉

• By C compactification a single-qubit state can be specified by a
single complex number so any tensor product of n qubit states can
be specified by n complex numbers. But it takes 2n − 1 complex
numbers to describe states of an n qubit system.

• Since 2n � n, the vast majority of n-qubit states cannot be
described in terms of the state of n separate qubits.

• Such states, that cannot be written as the tensor product of n
single-qubit states, are entangled states.
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Entanglement

For example, the Bell state

|Φ+〉 = 1√
2
(|00〉+ |11〉) =

1√
2
|00〉+ 1√

2
|11〉

is entangled
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Entanglement

Actually, to make |Φ+〉 equal to

(α1|0〉+β1|1〉)⊗(α2|0〉+β2|1〉) = α1α2|00〉+α1β2|01〉+β1α2|10〉+β1β2|11〉

would require that α1β2 = β1α2 = 0 which implies that either

α1α2 = 0 or β1β2 = 0

Note
Entanglement can also be observed in simpler structures, e.g. relations:

{(a, a), (b, b)} ⊆ A× A

cannot be separated, i.e. written as a Cartesian product of subsets of A.
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The measurement postulate

Postulate 4
For a given orthonormal basis B = {|v1〉, |v2〉, · · ·}, a measurement of a
state space |v〉 =

∑
i αi |vi 〉 wrt B, outputs the label i with probability

‖αi ‖2 and leaves the system in state |vi 〉.

• Measurements are made through projectors which identify the ‘data’
(i.e. the subspace of the relevant Hilbert space where the quntum
system lives) one wants to measure.

• Let us start with a couple of examples ... but for the general notion
let us recall the notion of adjoint operator.
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Adjoints

Given an operator U, its adjoint is the unique operator satisfying

(|w〉,U |v〉) = (U†|w〉, |v〉)

where (|x〉, |y〉) is the ‘verbose’ representation for the inner product
〈x , y〉. Thus, in Dirac notation the equality above becomes

〈w |Uv〉 = (U†|w〉)†|v〉 = 〈wU |v〉

or simply
〈w |U |v〉

The matrix representation of U† is the conjugate transpose of that of U

Exercise: Prove that 〈w |U |v〉 = 〈v |U†|w〉
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Projectors

Any projector P identifies in the state space V a subspace VP of all
vectors |φ〉 that are left unchanged by P, i.e. such that

P |φ〉 = |φ〉

Examples

• The identity I projects onto the whole space V .

• The zero operator projects onto the space {0} consisting only of the
zero vector.

• |u〉〈u| is the projector onto the subspace spanned by |u〉.
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Projectors

Examples

• Projector |0〉〈0| projects onto the subspace generated by |0〉, i.e.

|0〉〈0| (α|0〉+ β|1〉) = α|0〉〈0|(|0〉) + β|0〉〈0|(|1〉) = α|0〉

• Similarly, |10〉〈10| acts on a two-qubit state

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

yielding

|10〉〈10| (|v〉) = α10|10〉

and

|00〉〈00|+ |10〉〈10|(|v〉) = α00|00〉+ α10|10〉



The principles State space Evolution Composition Measurement

Projectors

A projector P : V → VP is an operator such that

P2 = P

Additionally, we require P to be Hermitian, i.e.

P = P†

Note that the combination of both properties yields

‖P |v〉‖2 = (〈v |P†)(P|v〉) = 〈v |P |v〉

Example
The probability of getting state |0〉 when measuring α|0〉+ β|1〉 with
P = |0〉〈0| is computed as

‖P |v〉‖2 = 〈v |P |v〉 = 〈v ||0〉〈0||v〉 = 〈v |0〉 〈0|v〉 = αα = ‖α‖2
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Projectors

Two projectors P,Q are orthogonal if PQ = 0.

The sum of any collection of orthogonal projectors {P1,P2, · · ·} is still a
projector (verify!).

A projector P has a decomposition if it can be written as a sum of
orthogonal projectors:

P =
∑
i

Pi

Such projectors yield measurements wrt to the corresponding
decomposition.
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Examples

• Complete measurement in the computational basis wrt to
decomposition

I =
∑
i∈2n

|i〉〈i |

in a state with n qubits.

• Incomplete measurement: e.g.∑
{i∈2n | i even}

|i〉〈i |
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Projectors

Example: measuring up to (bit equality)

V = Se ⊕ Sn

with Se the subspace generated by {|00〉, |11〉} in which the two bits are
equal, and Sn its complement. Pe and Pn, are the corresponding
projectors.

When measuring

v = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

with this device, yields a state in which the two bit values are equal with
probability

〈v |Pe |v〉 = (
√
‖α00 ‖2 + ‖α11 ‖2) = ‖α00 ‖2 + ‖α11 ‖2

Of course, the measurement does not determine the value of the two
bits, only whether the two bits are equal
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Projectors

Any orthonormal collection of vectors B = {|v1〉, |v2〉, · · ·} defines a
projector

P =
∑
i

|vi 〉〈vi |

If B spans the entire Hilbert space V , it forms a basis for V and P = I ,
i.e. B provides a decompostion for the identity.

Is there a standard way to provide a decomposition for P?
Yes, if P is a Hermitian operator, because of the

Spectral theorem
Any Hermitian operator on a finite Hilbert space V provides a basis for V
consisting of its eigenvectors.
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Projectors are Hermitian

Hermitian operators

• define a unique orthogonal subspace decomposition, their
eigenspace decomposition, and

• for every such decomposition, there exists a corresponding Hermitian
operator whose eigenspace decomposition coincides with it

Properties
Every eigenvalue λ with eigenvector |r〉 is real, because

λ〈r |r〉 = 〈r |λ|r〉 = 〈r | (P |r〉) = (〈r |P†) |r〉 = λ〈r |r〉
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Projectors are Hermitian

Properties
For any P Hermitian, two distinct eigenvalues have disjoint eigenspaces,
because, for any unit vector |v〉,

P |v〉 = λ|v〉 and P |v〉 = λ ′|v〉 and (λ− λ ′)|v〉 = 0

and thus λ = λ ′.

Moreover, the eigenvectors for distinct eigenvalues must be orthogonal,
because

λ〈v |w〉 = (〈v |P†) |w〉 = 〈v | (P |w〉) = µ〈v |w〉

for any pairs (λ, |v〉), (µ, |w〉) with λ 6= µ.
Thus, 〈v |w〉 = 0, because λ 6= µ, and the corresponding subspaces are
orthogonal.
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Projectors are Hermitian

Eigenspace decomposition of V for P
Any Hermitian P determines a unique decomposition for V

V = ⊕λiSλi

and any decomposition V = ⊕k
i=1Si can be realized as the eigenspace

decomposition of a Hermitian operator

P =
∑
i

λiPi

where each Pi is the projector onto Sλi
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Projectors are Hermitian

A decomposition can be specified by a Hermitian operator

• Any measurement is specified by a Hermitian operator P

• The possible outcomes of measuring a state |v〉 with P are labeled
by the eigenvalues of P

• The probability of obtaining the outcome labelled by λi is

‖Pi |v〉‖2

• The state after measurement is the normalized projection

Pi |v〉
‖Pi |v〉‖

onto the λi -eigenspace Si . Thus, the state after measurement is a
unit length eigenvector of P with eigenvalue λi
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