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Qubits Actions

Probabilistic states

• Classical bits are represented by Boolean values 0 and 1

• A probabilistic (classical) state can be represented by a vector of
probabilities, e.g. the state 0 by a vector assigning probability 1 to 0
and 0 to 1, and similarly for state 1:

|0〉 =
[

1
0

]
|1〉 =

[
0
1

]
• If the state combines two probabilistic bits, say,[

p0
p1

] [
q0
q1

]
it has 4 possibilities {00, 01, 10, 11} each with a probability obtained
by multiplying the corresponding probabilities of each component:

p0q0
p0q1
p1q0
p1q1

 =

[
p0
p1

]
⊗
[
q0
q1

]

where ⊗ is the vectorial tensor product.



Qubits Actions

Quantum states

A quantum (binary) state is represented as a superposition, i.e. a linear
combination of vectors |0〉 and |1〉 with complex coeficients:

|φ〉 = α|0〉+ β|1〉 =

[
α
β

]
When state |φ〉 is measured (i.e. observed) one of the two basic states
|0〉, |1〉 is returned with probability

‖α‖2 and ‖β‖2

respectively.
Being probabilities, the norm squared of coefficients must satisfy

‖α‖2 + ‖β‖2 = 1

which enforces quantum states to be represented by unit vectors.



Qubits Actions

Vector spaces

Complex vector space
A set U of vectors generates a complex vector space whose elements can
be written as linear combinations of vectors in U:

|v〉 = a1|u1〉+ a2|u2〉+ · · ·+ an|un〉

i.e.

• Abelian group (V ,+,−1, 0)

• with scalar multiplication (c · |v〉 distributing over +, often
represented by juxtaposition)



Qubits Actions

The Dirac notation

The symbol labelling a vector is written inside a

|〉

i.e. |a〉 rather than e.g. ã

• Once a basis is chosen |a〉 can be represented as a column vector.

• Typically, the spaces of interest will have dimension 2n, for an
integer n > 0, because, as in the classical case, larger state spaces
are obtained from smaller ones, usually of size 2.



Qubits Actions

The Dirac notation

In the computational basis — {|0〉, |1〉} — the 2n basis vectors are labelled
by binary strings of length 2, e.g. for n = 3

|000〉 =



1
0
0
0
0
0
0
0


|001〉 =



0
1
0
0
0
0
0
0


· · · |110〉 =



1
1
1
1
1
1
1
0


|111〉 =



1
1
1
1
1
1
1
1





Qubits Actions

The Dirac notation

An arbitrary state is written as a superposition. For example, for n = 3,
state √

2

3
|01〉+ i√

3
|11〉 =

√
2

3
|0〉 ⊗ |1〉+ i√

3
|1〉 ⊗ |1〉

in Dirac notation corresponds to the column vector
0√
2
3

0
i√
3


Note that

∥∥∥∥ i√
3

∥∥∥∥2 + ∥∥∥∥
√

2

3

∥∥∥∥2 =

(√
i√
3
x
−i√

3

)2

+

√√2

3
x

√
2

3

2

= 1



Qubits Actions

Hilbert spaces

Complex, inner-product vector space
A complex vector space with inner product

〈−|−〉 : V × V −→ C

such that

(1) 〈v |
∑
i

λi · |wi 〉〉 =
∑
i

λi 〈v |wi 〉

(2) 〈v |w〉 = 〈w |v〉
(3) 〈v |v〉 ≥ 0 (with equality iff |v〉 = 0)

Note: 〈−|−〉 is conjugate linear in the first argument:

〈
∑
i

λi · |wi 〉|v〉 =
∑
i

λi 〈wi |v〉

Notation: 〈v |w〉 ≡ 〈v ,w〉 ≡ (|v〉, |w〉)



Qubits Actions

Hilbert spaces

Dot product
A useful example of a inner product is the dot product

〈u|v〉 =


u1
u2
...
un

 .

v1
v2
...
vn

 =
[
u1 u2 · · · un

]︸ ︷︷ ︸
〈u|


v1
v2
...
vn

 =

n∑
i=1

uivi

where c = a − ib is the complex conjugate of c = a + ib

〈u| is the adjoint of vector |u〉, i.e a vector in the dual vector space V †.



Qubits Actions

Hilbert spaces

Dual space
If V is a Hilbert space, V † is the space of linear maps from V to C.

Elements of V † are denoted by

〈u| : V −→ C defined by 〈u|(|v〉) = 〈u|v〉

In a matricial representation 〈u| is obtained as the Hermitian conjugate
(i.e. the transpose of the vector composed by the complex conjugate of
each element) of |u〉, therefore the dot product of |u〉 and |v〉.



Qubits Actions

Dirac’s notation
Dirac’s bra/ket notation is a handy way to represent elements and
constructions on an Hilbert space, amenable to calculations and with
direct correspondence to diagrammatic (categorial) representations of
process theories

|u〉 A ket stands for a vector in an Hilbert space V . In Cn, a
column vector of complex entries. The identity for + (the
zero vector) is just written 0.

〈u| A bra is a vector in the dual space V †, i.e. scalar-valued
linear maps in V — a row vector in Cn.

There is a bijective correspondence between |u〉 and 〈u|

|u〉 =

u1...
un

 ⇔ [
u1 · · · un

]
= 〈u|

A tradition going back to Penrose in the 1970’s.



Qubits Actions

Bases

Old friends

• |v〉 and |w〉 are orthogonal if 〈v |w〉 = 0

• norm: ‖ |v〉‖=
√
〈v |v〉

• normalization: |v〉
‖|v〉‖

• |v〉 is a unit vector if ‖ |v〉‖= 1

• A set of vectors {|i〉, |j〉, · · · , } is orthonormal if each |i〉 is a unit
vector and

〈i |j〉 = δi,j =

{
i = j ⇒ 1

otherwise ⇒ 0



Qubits Actions

Bases

Orthonormal basis
A orthonormal basis for a Hilbert space V of dimension 2n is a set
B = {|i〉} of 2n linearly independent elements of V st spanning V

• 〈i |j〉 = δi,j for all |i〉, |j〉 ∈ B

• and spans V , i.e. st every |v〉 in V can be written as

|v〉 =
∑
i

αi |i〉 for some αi ∈ C

Note that the amplitude or coefficient of |v〉 wrt |i〉 satisfies

αi = 〈i |v〉

Why?



Qubits Actions

Bases

αi = 〈i |v〉 because

〈i |v〉 = 〈i |
∑
j

αj j〉

=
∑
j

αj〈i |j〉

=
∑
j

αjδi,j

= αi

Note
If |v〉 is expressed wrt any orthonormal basis {|i〉}, i.e. |v〉 =

∑
i αi |i〉, then

‖ |v〉‖ =
∑
i

‖αi ‖2



Qubits Actions

Example: The Hadamard basis
One of the infinitely many orthonormal bases for a space of dimension 2:

|+〉 = |↗〉 = 1√
2
|0〉+ 1√

2
|1〉

|−〉 = |↖〉 = 1√
2
|0〉− 1√

2
|1〉

Check normality, e. g.

〈+|−〉 =
1

2
(〈0|+ 〈1|)(|0〉− |1〉) =

1

2

[
1
1

]
.

[
1
−1

]
=

1

2

[
1 1

] [ 1
−1

]
= 0

Check orthogonality, e. g.

‖ |+〉‖ =
√
〈+|+〉 =

√
1

2
(〈0|+ 〈1|)(|0〉+ |1〉) =

√
1

2

[
1
1

]
.

[
1
1

]
= 1



Qubits Actions

Bases

A basis for V †

If {|i〉} is an orthonormal basis for V , then

{〈i |}

is an orthonormal basis for V †



Qubits Actions

Example: Computing 〈u|v〉

Clearly, the inner product of two vectors over the same orthonormal basis
boils down to vector multiplication:

〈u|v〉 = 〈
∑
i

ui |i〉|
∑
j

vj |j〉〉

=
∑
i,j

uivjδi,j

=
∑
i

uivi

=
[
u1 · · · un

] v1...
vn





Qubits Actions

Example: Computing 〈u|v〉

|u〉 =
√

2

3
|01〉+ i√

3
|11〉 =


0√
2
3

0
i√
3

 and |v〉 =
√

1

2
|10〉+

√
1

2
|11〉 =


0
0√
1
2√
1
2


In matricial representation

[
0
√

2
3 0 −i√

3

]


0
0√
1
2√
1
2

 = 0× 0 +

√
2

3
× 0 + 0×

√
1

2
+

−i√
3
×
√

1

2

=
−i√

6



Qubits Actions

Example: Computing 〈u|v〉

In Dirac notation

〈u|v〉 =

(√
2

3
〈01|+

−i√
3
〈11|

)(√
1

2
|10〉+

√
1

2
|11〉

)

=

√
2

3

√
1

2
〈01|10〉︸ ︷︷ ︸

0

+

√
2

3

√
1

2
〈01|11〉︸ ︷︷ ︸

0

+
−i√

3

√
1

2
〈01|10〉︸ ︷︷ ︸

0

+
−i√

3

√
1

2
〈11|11〉

=
−i√

6



Qubits Actions

Hilbert spaces

The complete picture
Complete, complex, inner-product vector space, complete meaning that
any Cauchy sequence

|v1〉, |v2〉, · · ·

converges
∀ε>0 ∃N ∀m,n>0 ‖ |vm〉, |vn〉‖≤ ε

This completeness condition is trivial in finite dimensional vector spaces



Qubits Actions

Actions

• Operators (often called gates) are linear transformations

• Measurements (also called observations)

Matrices as linear maps
Any m × n matrix M can be seen as a linear operator mapping vectors in
Cn to vectors in Cm. Linearity means that

M

∑
j

αj |vj〉

 =
∑
j

αj M |vj〉

holds, where the action of M in a m-dimensional vector corresponds to
multiplication.



Qubits Actions

Operating with qubits

The X =

[
0 1
1 0

]
gate

X |0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉



Qubits Actions

Operating with qubits

The H gate creates superpositions

H =
1√
2

[
1 1
1 −1

]

H |0〉 = |+〉 =

superposition︷ ︸︸ ︷
1√
2
(|0〉+ |1〉)

H |1〉 = |−〉 = 1√
2
(|0〉− |1〉)



Qubits Actions

Operating with qubits

Linear maps as matrices
Let V and W be vector spaces with basis, respectively,

BV = {|v1〉, · · · , |vn〉} and BW = {|w1〉, · · · , |wm〉}

A linear operator, i.e. a map M : V −→W st

M

∑
j

αj |vj〉

 =
∑
j

αj M(|vj〉)

can be represented by a m × n matrix st, for each j ∈ 1..n,

M(|vj〉) =
∑
i

Mi,j |wi 〉

Composition of linear operators amounts to multiplication of the
corresponding matrices.
This representation is, of course, basis dependent.



Qubits Actions

Operators expressed in Dirac’s notation

Dirac’s notation provides a convenient way to specify linear
transformations on quantum states:

outer product

|w〉〈u| (|z〉) =̂ |w〉〈u||z〉 = |w〉 〈u|z〉 = 〈u|z〉 |w〉

• matrix multiplication (composition of linear maps) is associative and
scalars (zero objects in the corresponding universe) commute with
everything



Qubits Actions

Operators expressed in Dirac’s notation

In an orthonormal basis the operator

U = |i〉〈j |

maps |j〉 to |i〉, because

U |j〉 = |i〉 〈j ||j〉︸︷︷︸
1

= |i〉

In the computational basis, |i〉〈j | is the matrix with 1 in position (i , j).
Thus, the identity operator I can be written as

I =
∑
i

|i〉〈i |



Qubits Actions

Operators expressed in Dirac’s notation

Example: |0〉〈1|

|0〉〈1| =

[
1
0

] [
0 1

]
=

[
0 1
0 0

]
which has the following behaviour:
|0〉〈1| maps |1〉 7→ |0〉 and |0〉 7→ 0

|0〉〈1| |1〉 = |0〉 〈1|1〉 = |0〉 1 = |0〉
|0〉〈1| |0〉 = |0〉 〈1|0〉 = |0〉 0 = 0



Qubits Actions

Operators expressed in Dirac’s notation

Example: X = |0〉〈1|+ |1〉〈0|

|0〉〈1|+ |1〉〈0| (|0〉) = |0〉〈1| (|0〉) + |1〉〈0| (|0〉) = 0 + |1〉 = |1〉
|0〉〈1|+ |1〉〈0| (|1〉) = |0〉〈1| (|1〉) + |1〉〈0| (|1〉) = |0〉+ 0 = |0〉

represented by the following matrix in the computational basis:[
0 1
1 0

]



Qubits Actions

Operators expressed in Dirac’s notation

Example: |10〉〈00|+ |00〉〈10|+ |11〉〈11|+ |01〉〈01|

Maps |00〉 7→ |10〉 and |10〉 7→ |00〉
Clearly, 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1





Qubits Actions

Operators expressed in Dirac’s notation

A general operator A with entries aij in the standard basis can be written

A =
∑
i

∑
j

aij |i〉〈j |

Conversely, the i , j entry of the matrix for A in the standard basis is given
by

〈i |A|j〉

Why?



Qubits Actions

Operators expressed in Dirac’s notation

aij = 〈i |A|j〉 because

A = I A I

=
∑
i

|i〉〈i | A
∑
j

|j〉〈j |

=
∑
i

∑
j

|i〉〈i |A|j〉〈j |

=
∑
i

∑
j

〈i |A|j〉︸ ︷︷ ︸
aij

|i〉〈j |



Qubits Actions

Operators expressed in Dirac’s notation

Example
Let |s〉 =

∑
k βk |k〉.

A|s〉 =

∑
i

∑
j

aij |i〉〈j |

 (∑
k

βk |k〉

)

=
∑
i

∑
j

∑
k

aij βk |i〉〈j | |k〉

=
∑
i

∑
j

aij βj |i〉



Qubits Actions

Operators expressed in Dirac’s notation

In general, given a basis BV = {|βi 〉} for a N-dimensional Hilbert space
V , an operator

A : V −→ V

can be written as ∑
i

∑
j

aij |βi 〉〈βj |

wrt this basis. The matrix entries are aij , as expected.

The Dirac’s notation is

• independent of the basis and the order of the basis elements

• more compact

• and builds up intuitions ...


	Qubits
	Actions

