
Labelled Transition Systems

Lúıs Soares Barbosa

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ≡ interaction

• behaviour ≡ a structured record of interactions

Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Labelled Transition System

Definition
A LTS over a set N of names is a tuple 〈S ,N, ↓,−→〉 where

• S = {s0, s1, s2, ...} is a set of states

• ↓⊆ S is the set of terminating or final states

↓ s ≡ s ∈↓
• −→⊆ S × N × S is the transition relation, often given as an

N-indexed family of binary relations

s
a−→ s ′ ≡ 〈s ′, a, s〉 ∈−→

Labelled Transition System

Morphism
A morphism relating two LTS over N, 〈S ,N, ↓,−→〉 and
〈S ′,N, ↓ ′,−→ ′〉, is a function h : S −→ S ′ st

s
a−→ s ′ ⇒ h s

a

−→ ′ h s ′

s ↓ ⇒ h s ↓ ′
morphisms preserve transitions and termination

Labelled Transition System

System
Given a LTS 〈S ,N, ↓,−→〉, each state s ∈ S determines a system over all
states reachable from s and the corresponding restrictions of −→ and ↓.

LTS classification

• deterministic

• non deterministic

• finite

• finitely branching

• image finite

• ...

Reachability

Definition
The reachability relation, −→∗⊆ S × N∗ × S , is defined inductively

• s
ε−→∗ s for each s ∈ S , where ε ∈ N∗ denotes the empty word;

• if s
a−→ s ′′ and s ′′

σ−→∗ s ′ then s
aσ−→∗ s ′, for a ∈ N, σ ∈ N∗

Reachable state
t ∈ S is reachable from s ∈ S iff there is a word σ ∈ N∗ st s

σ−→∗ t

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉 is a function h : S −→ S ′ st the
following diagram commutes

S × N

h×id
��

next // PS

Ph

��

S ′ × N
next ′ // PS ′

i.e.,
Ph · next = next ′ · (h × id)

or, going pointwise,

{h x | x ∈ next 〈s, a〉} = next ′ 〈h s, a〉

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h : 〈S , next〉 −→ 〈S ′, next ′〉

• preseves transitions:

s ′ ∈ next 〈s, a〉⇒ h s ′ ∈ next ′ 〈h s, a〉

• reflects transitions:

r ′ ∈ next ′ 〈h s, a〉⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h s ′〉

(why?)

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ≡ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next ′ · (h × id)

Automata

Back to old friends?

automaton behaviour ≡ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 =̂ L1 ∪ L2 (union)

• L1 · L2 =̂ {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ =̂ {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)
∗ = (E1 E2)

∗ E1

Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)
∗ = (E1 E2)

∗ E1

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Need to distinguish normal from anomalous termination (eg
deadlock)

• Nondeterminisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt nondeterminism

• Moreover: the reactive characters of systems entail that not only
the generated language is important, but also the states traversed
during an execution of the automata.

