Labelled Transition Systems

Luis Soares Barbosa

U
N7 -
N
X UNITED NATIONS
NIVERSITY
Q@I@®Hastab oo 2\
Universidade do Minho 8 [{'};‘P_‘rfnﬁ""mum UNU-EGOV

Interaction & Concurrency Course Unit (Lcc)

Universidade do Minho

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

® in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

e observation = interaction

e behaviour = a structured record of interactions

Reactive systems

Concurrency vs interaction

x:=0;
x=x+1|x:=x+2

e both statements in parallel could read x before it is written
e which values can x take?

e which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Labelled Transition System

Definition
A LTS over a set N of names is a tuple (S, N, |, —) where

e S ={sg,51,5,...} is a set of states

e |C S is the set of terminating or final states
ls=sel

e —C S x N x S is the transition relation, often given as an
N-indexed family of binary relations

s—2s' = (s’ as) e—

Labelled Transition System

Morphism

A morphism relating two LTS over N, (S, N, |, —) and
(§',N,|’,—"), is a function h: S — S’ st

a
s—=s" = hs—'hs'
sl = hs]|’

morphisms preserve transitions and termination

Labelled Transition System

System

Given a LTS (S, N, |, —), each state s € S determines a system over all
states reachable from s and the corresponding restrictions of — and |.

LTS classification

e deterministic

® non deterministic
e finite

e finitely branching

e image finite

Reachability

Definition
The reachability relation, —*C S x N* x S, is defined inductively

*
e s = sforeach s €S, where € € N* denotes the empty word;
* *
e ifs—23s"ands” 2 s thens ™5 s/, forae N,oe N*

Reachable state X
t € S is reachable from s € S iff there is a word 0 € N* st s = ¢t

Labelled Transition System

Alternative characterization (coalgebraic)

A morphism h: (S, next) — (S’,next’) is a function h: S — S’ st the
following diagram commutes

Sx N, ps

hxidl J{?h

S/ x N pgr

Ph-next = next’ - (hxid)

or, going pointwise,

{hx|x € next (s,a)} = next’ (hs,a)

Labelled Transition System

Alternative characterization (coalgebraic)
A morphism h: (S, next) — (5’ next’)

® preseves transitions:
s’ € next (s,a) = hs' € next’ (hs,a)

e reflects transitions:

r' enext’ (hs,a)= (3s' €S : s’ €next (s a):

(why?)

r'=hs')

Comparison

e Both definitions coincide at the object level:
(sya,s'y €T = s’ €next (s, a)

e Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph-next C next’-(hxid)

Automata

Back to old friends?

automaton behaviour = accepted language

Recall that finite automata recognize regular languages, i.e. generated by
o [+1,= L;ULy (union)
o [;-L,= {st|sel;,tely} (concatenation)
o [*= {e}ULU(L-L)U(L-L-L)U... (iteration)

Automata

There is a syntax to specify such languages:
E = e¢|al E+E| EE | E*
where a € L.

e which regular expression specifies {a, bc}?

e and {ca, cb}?

Automata

There is a syntax to specify such languages:
E == e¢e|a|E+E| EE| E"
where a € L.

e which regular expression specifies {a, bc}?

e and {ca, cb}?
and an algebra of regular expressions:

(E1 + BE) + E5
(B + E)Es
E (B B)*

E; + (E + E3)
EEs+EE;
(ELB)E

After thoughts

. need more general models and theories:

e Several interaction points (# functions)

e Need to distinguish normal from anomalous termination (eg
deadlock)

e Nondeterminisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt nondeterminism

e Moreover: the reactive characters of systems entail that not only
the generated language is important, but also the states traversed
during an execution of the automata.

