

Exercises 6 : Interaction and Concurrency

Luís Soares Barbosa

Exercise 1

Prove that

true =
$$\nu X \cdot X$$
 and false = $\mu X \cdot X$

Exercise 2

Consider the following transition system.

Determine all sets $S \subseteq \{s, s_1, s_2\}$ which are solutions of the following equations over \mathcal{PP} :

$$\begin{split} \|X\| &= \langle a \rangle \operatorname{true} \lor [b] X \\ \|X\| &= \langle a \rangle \operatorname{true} \lor ([b] X \land \langle b \rangle \operatorname{true}) \end{split}$$

Exercise 3

Compute ||[b] false $\land [a] X || (\{q2\})$ with respect to the following transition system:

Exercise 4

A safety residence alarm is supposed to activate the alarm (event modelled by action *alm*) as soon as the presence of an intruder is detected (event modelled by action *int*).

- 1. Do you think that formula $[int] (\langle alm \rangle true \land [-alm] false)$ is a rightful representation of this behaviour?
- 2. If not, give the correct specification.

Exercise 5

Define in μ -calculus the following property over a beverage dispenser machine : The deposit of two coins leads to the acquisition of a coffee or a tea.

Exercise 6

In an industrial assembly line, the following is an important property:

 ϕ = whenever an error occurs the system stops.

- 1. Assuming action *error* models the occurrence of an error, specify property ϕ in μ -calculus.
- 2. Recall the classes of properties mentioned in the lectures. In which classes would you incude ϕ ? Why?

Exercise 7

Suppose you were given a process specifying the behaviour of a slot machine in which action win(x) corresponds to the player wining x coins. It was suggested that the process should satisfy one of the following properties: propriedades:

$$\begin{array}{lll} \phi_1 &=& \nu X . \left(\mu Y . \left(\left\langle win(1000)\right\rangle \mathsf{true} \lor \left\langle -\right\rangle Y\right) \land [-] X\right) \\ \phi_2 &=& \nu X . \left(\mu Y . \left\langle -\right\rangle Y\right) \lor \left\langle win(1000)\right\rangle X \end{array}$$

A colleague, however, argued that ϕ_1 and ϕ_2 were equivalent.

- 1. Explain the meaning of both properties and discuss if they are indeed equivalent.
- 2. Recall the classes of properties mentioned in the lectures. In which classes would you incude ϕ_1 ? And ϕ_2 ? Justify.